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This book provides a thorough introduction to the subfield of theoretical computer science known 
as grammatical inference from a computational linguistic perspective. Grammatical inference pro-
vides principled methods for developing computationally sound algorithms that learn structure from 
strings of symbols. The relationship to computational linguistics is natural because many research 
problems in computational linguistics are learning problems on words, phrases, and sentences: What 
algorithm can take as input some finite amount of data (for instance a corpus, annotated or other-
wise) and output a system that behaves “correctly” on specific tasks?

Throughout the text, the key concepts of grammatical inference are interleaved with illustrative 
examples drawn from problems in computational linguistics. Special attention is paid to the notion 
of “learning bias.” In the context of computational linguistics, such bias can be thought to reflect 
common (ideally universal) properties of natural languages. This bias can be incorporated either 
by identifying a learnable class of languages which contains the language to be learned or by using 
particular strategies for optimizing parameter values. Examples are drawn largely from two linguistic 
domains (phonology and syntax) which span major regions of the Chomsky Hierarchy (from regular 
to context-sensitive classes). The conclusion summarizes the major lessons and open questions that 
grammatical inference brings to computational linguistics.
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ABSTRACT
This book provides a thorough introduction to the subfield of theoretical computer science known as
grammatical inference from a computational linguistic perspective. Grammatical inference provides
principled methods for developing computationally sound algorithms that learn structure from
strings of symbols. The relationship to computational linguistics is natural because many research
problems in computational linguistics are learning problems on words, phrases, and sentences: What
algorithm can take as input some finite amount of data (for instance a corpus, annotated or otherwise)
and output a system that behaves “correctly” on specific tasks?

Throughout the text, the key concepts of grammatical inference are interleaved with illus-
trative examples drawn from problems in computational linguistics. Special attention is paid to the
notion of “learning bias.” In the context of computational linguistics, such bias can be thought to
reflect common (ideally universal) properties of natural languages. This bias can be incorporated
either by identifying a learnable class of languages which contains the language to be learned or by
using particular strategies for optimizing parameter values. Examples are drawn largely from two
linguistic domains (phonology and syntax) which span major regions of the Chomsky Hierarchy
(from regular to context-sensitive classes). The conclusion summarizes the major lessons and open
questions that grammatical inference brings to computational linguistics.

KEYWORDS
grammatical inference, language learning, natural languages, formal languages
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Preface

Once authors have written the words “The End,” they realize how much has been left out. And this
rule holds if instead of one author, there are three. This is one reason why prefaces are important.
They let readers know (and remind the authors) what the book achieves and what it does not.

The tasks addressed in this book become more formidable with each passing day. It is
becoming more complex and intricate because there are more and more cases where one is delivered
a huge amount of strings, words, or sentences, or has access to some such data, and one is asked
how to build a model summarizing or explaining this information. Furthermore, for many reasons—
for example, the fact that most computer scientists have taken courses on graph theory and formal
languages—the types of models people are seeking will be very often linked with grammars and
automata.

That is why, today, there are people attempting to build or infer grammars or finite-state
machines in fields as different as verification, pattern recognition, bioinformatics, and linguistics.
That is why techniques of all sorts are being used to infer these models: some rely on statistics, others
on linear algebra, some on formal language theory, and many quite often on a combination of these.
And finally, that is why certain choices have been made in this book, and therefore some readers
might be frustrated.

Before we explain why some of our choices may frustrate readers, let us state who we
think our readers are. One reason we embarked on this project was because there is no text
which introduces grammatical inference to people working in computational linguistics and natural
language processing. Our hope is that this book helps bridge the gap between the needs of these
researchers and a particular way of thinking about the problems of learning automata and grammars
in machine learning. We sincerely believe grammatical inference can help address problems in
computational linguistics and that problems in computational linguistics can inform and lead to
new developments in grammatical inference (in fact, such mutual benefits exist and are ongoing).

We also have in mind readers who are not encountering automata and grammars for the first
time. The kind of background knowledge we expect readers to have is of the type that could be found
in standard textbooks on formal language theory that one might take as an advanced undergraduate
student or a beginning graduate student. We also expect readers to have some familiarity with topics
in computational linguistics and natural language processing, like the kinds discussed in the books
by Jurafsky and Martin [2008] or Manning and Schütze [1999] (or their more recent editions).
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xx PREFACE

So what are the choices that may frustrate readers? The first choice we made was to concentrate
on only some tools and techniques, and not attempt to be exhaustive.

The second choice was to cover the tools and techniques which have been developed in what
may informally be called the school of grammatical inference, as represented, over the past 30 years,
by the papers published in the series of conferences called ICGI—International Conference on
Grammatical Inference. These share a certain number of aspects.

. They build upon well-understood formal language formalisms and avoid, whenever possible,
technical complications in the definitions of the objects themselves.

. They either attempt to deliver formal learnability results, independent of some particular
corpus, or, on the other hand, aim to produce a very general algorithm whose proof of concept
will be given by its results on particular corpora without corpus-specific tweaks.

Consequently, this means the knowledge we present builds from formal language theory and
concentrates on those techniques whose intricate theoretical backbone comes from that field.

A third choice is that the book is not self-contained, in the sense that not every algorithm
discussed is presented and proved correct in full detail. Instead, we have chosen to focus on ideas, and
to include only the notation, definitions, and theorems that we felt important because they support
those main points. We do not include proofs, but we try to point to them and further material
which helps readers find detailed descriptions and explanations of the algorithms or formalisms. For
instance, we often refer to de la Higuera [2010], a book on grammatical inference with a general
orientation, which is self-contained.

Together all of this means leaving out certain results, which no doubt deserve closer attention.
For finite-state machines, one notable area left out is spectral methods, which identify finite-

state machines with sets of matrices and therefore transforms the learning problem into one which
searches for an optimal set of parameters which fits those matrices. The techniques here are attractive:
they allow the learning of very rich classes of finite-state machines, rely on linear algebra’s vast
literature, and can be redefined as global optimization problems, for which a large number of
researchers are bettering the algorithms all the time.

For formal grammars, a number of results (sometimes grouped under the name grammar
induction) are based on starting with a backbone grammar, either extremely general or devised from
using data for which the structure is known, and adjusting the parameters by just observing relative
frequencies. The types of grammars will themselves be adapted to better fit the knowledge we have
of natural language.

We do not argue here that the techniques covered in this book work better, just that they
correspond to a uniform set of ideas which, when understood, can allow a number of problems to
be solved.
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Perhaps one argument which we would like to put forward is that of intelligibility. Albeit
informal in most cases, the idea is that the types of techniques proposed in this book rely on
wanting to understand the machines and grammars learned. An undeclared goal is that one should
be able to run a grammatical inference algorithm, obtain perhaps a large automaton or grammar, and
nevertheless be able to observe it and understand it, not just its effects. This helps to explain why
we believe that the issue of learning the structure of the grammar is essential, and why this theme
recurs throughout the book.

One may wonder if this is necessary, as the grammar will often be evaluated through a success
or error rate, not through its capacity to speak to us. On the other hand, there are increasingly many
applications where the user wants more than a black box.

All of this, and the idea of making the book useful to as many readers as possible, was what
the authors had in mind when they launched this adventure.
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1

C H A P T E R 1

Studying Learning

Grammatical inference is a subfield of theoretical computer science which aims to characterize,
understand, and solve learning problems in terms of formal languages and grammars. The field
of computational linguistics faces many different kinds of tasks which involve natural languages
and learning. Many of these tasks aim to automate decisions and processes that humans accurately
undertake every day with apparently very little conscious effort. Examples include word recognition
and segmentation, the phonological, morphological, syntactic, semantic, and pragmatic analysis of
both speech and written texts, and, at least for multilingual speakers, translation.

Computationally, these are difficult problems, each with their own subproblems and sub-
tleties, but there can be little doubt that solving nearly every one of them goes hand-in-hand with
understanding natural language systems. Natural languages are systems with their own internal log-
ics, rules, constraints, and structures. It is one of the grand mysteries of contemporary times that
humans appear to have this knowledge (as evidenced by their mostly uniform behavior in many lin-
guistic tasks) despite the fact that it is unconscious (humans cannot easily articulate it in any detail)
and untaught (while it is acquired it is not explicitly taught). In fact, it is one of the goals of the
academic disciplines of theoretical and descriptive linguistics to precisely state the types of systems
natural languages are.

The grand mystery may be solved by one of the marvelous promises of modern times. The
development of hardware and software that can make discoveries and learn has changed—and
continues to change—our society and our lives. If the systems that underly natural languages can
be learned by such machines and programs—if these logics, rules, constraints, and structures can
be automatically acquired—then virtually all of the above tasks will be solvable automatically by
machines.

Grammatical inference goes to the heart of this enterprise. The “grammar” in “grammatical
inference” refers to any aspect of the logics, rules, constraints, and structures that compose the sys-
tems underlying natural language. Grammars are models of these systems of knowledge. “Inference”
refers to rational steps made in acquiring knowledge from observations and prior assumptions about
those observations. At its core, grammatical inference is a method of inquiry that tries to understand
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2 1. STUDYING LEARNING

the computations involved in making inferences about grammars from observations under a variety
of different learning scenarios.

The purpose of this book is to introduce computational linguists to the major results of
this field and to its way of thinking. While the field of grammatical inference has much to offer
computational linguistics, there is no doubt that computational linguists can make contributions to
the field of grammatical inference as well.

The notion of grammar adopted here is broad enough that it can be used for any generative
system, including non-linguistic ones in other fields. For example, there can be grammars for DNA
or RNA sequences, for the order in which messages should be sent over a computer network, or for
the structure of web pages. In this book, however, we will either discuss situations that deal with
natural language data or discuss topics that are of general nature (and hence valid for all types of
data).

1.1 AN OVERVIEW OF GRAMMATICAL INFERENCE
Grammatical inference takes a cue from formal language theory. Knowledge regarding a natural
language can be modeled with a formal language. For instance, the knowledge of which sentences
in a natural language are well formed can be modeled with a formal language that contains all and
only those sequences of words which together constitute the set of well-formed sentences. Another
example comes from phonology: the fact that English speakers generally can (and do and will) coin
words like “bling” but generally cannot (and do not and will not) coin words like “gding” can be
modeled with a formal language that contains all and only those sequences of letters (or phonemes
or speech sounds) which make up the possible well-formed words of the language. While these sets
of sentences and words are infinite, grammars are finite representations of these formal languages.
Henceforth, we will refer to the elements of formal languages—these sequences of symbols—as
strings.

While these examples are simple, more complex knowledge can also be modeled with formal
languages. If well-formedness is stochastic, then probabilistic grammars can be used. If syntactic
constituency is part of the knowledge we wish to model, then we can introduce symbols into
the strings which represent constituent boundary symbols. Whether these abstract symbols are
observable to learners depends on the learning scenario. Since practically anything can be represented
with strings (even a video, even a grammar), the use of formal language theory is sufficiently broad
for the form of inquiry undertaken by researchers in grammatical inference.

Grammatical inference construes the learning process broadly as follows. The setup is shown
in Figure 1.1. Information from the language that is to be learned is provided by an abstract entity
called the oracle. The oracle has access to a grammar, description, representation, or model of the
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1.2 Formal and Empirical Grammatical Inference 3

Information
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FIGURE 1.1: General overview of the process of grammatical inference.

language (MO). Based on this knowledge, the oracle can provide learners with information, which
typically consists of strings that are valid according to model MO. The task of the learner is now to
create its own model (ML) of the language based on the information (that comes from the model
MO) provided by the oracle. The learner may make requests to the oracle for information.

Within this general framework, several concrete decisions need to be made to establish a
precise learning scenario. What kind of information does the oracle provide the learner? What kind
of requests can the learner make, if any? How close does ML have to be to MO to count as successful
learning?

Typically, the information provided to the learner by the oracle is in the shape of strings
that are part of the language that the model MO describes (or when the learning scenario allows,
explicitly marked as not being part of the language of MO). There are several ways the learner
may ask for additional information. For instance, the learner may simply ask for another string or
specifically ask whether a string so far unseen is valid or not. These choices change the specific setting
of the learning process. Additionally, whether certain types of information, such as tree structures
or semantic features, are allowed or not is also a choice of the particular learning scenario adopted.

1.2 FORMAL AND EMPIRICAL GRAMMATICAL INFERENCE
In this book, we will describe two different approaches to grammatical inference as a science.
First, we will discuss formal grammatical inference and, second, empirical grammatical inference.
Roughly speaking, the former addresses general behavior of learning algorithms with theorems and
mathematical proofs and the latter addresses the specific behavior of learning algorithms by examining
their performance on particular tasks.

It should not be surprising that the field of grammatical inference breaks down this way. In
computer science, we want to know our algorithms work as intended. This requires a well-defined
problem space and well-defined criteria for solutions for every problem instance. It is helpful to
compare the situation to a simpler one. In introductory computer science courses we learn which
procedures can sort lists. There are many algorithms that can do this such as (for instance) bubble
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4 1. STUDYING LEARNING

sort. Importantly, the problem space is well defined. The inputs to the problem contain any finite
list of elements in addition to an ordering relation over those elements. The success criteria are also
well defined. The job of the algorithm is to return a new list with the elements of the input list
sorted according to the ordering relation. It is a theoretical result that bubble sort correctly solves
this problem for any of the possible inputs.

We can consider a world before bubble sort (or any other sorting algorithm) had been
discovered. How could we reliably sort lists in such a world? One method may have been to develop
procedures and to test their performance on individual lists. Does the procedure seem to do its job
on lists A, B, and C? If so, we may hope that it does well on lists D and E as well. Of course, without
a theoretical result, there would be no guarantee the procedure performs well on D and E. On the
other hand, efforts to successfully sort lists A, B, and C may well lead to such a theoretical result.

In other words, when trying to address any problem computationally, there are two fronts
with which it can be addressed: the formal front and the empirical one. Grammatical inference is a
research program working at both these levels. The formal approach is concerned with defining the
problem space and proving that an algorithm satisfies the solution criteria for any instance of the
problem space. Progress is made when learning problems are identified and algorithms developed
which provably solve them. The problems can vary in their instance space and their success criteria.
This is why we say formal grammatical inference is concerned with ascertaining the general behavior
of algorithms which are engaged in learning. Given an initial set of assumptions about the input to
the learning algorithm, can we guarantee a certain level of performance?

On the other hand, empirical grammatical inference is more concerned with improving the
specific behavior of algorithms engaged in learning. These algorithms are usually run for particular
tasks for which particular inputs are already present. For instance, given a particular training corpus
of data as input, can we improve the output of the algorithm so that it performs better according
to some metrics on a particular test set of data? The empirical approach tries to get something to
work well for one case, and then another, and then another. This approach is often motivated by
deploying quickly a system which works for the immediate cases at hand.

Part of the issue researchers face in the computational science of learning is precisely stating
what the instance space and success criteria are. This is one reason why formal grammatical inference
is difficult (but also exciting). Where one chooses to work is a matter of personal preference. But there
can be little doubt about the ultimate importance of the formal work. One only needs to consider
where we would be without theoretical guarantees for sorting algorithms (and many other kinds of
algorithms) to see why. This does not lessen the importance of empirical approaches. Not only are
they often crucial intermediate stages in developing formal results, they are also more immediately
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1.3 Formal Grammatical Inference 5

applicable to tasks we wish to automate today. An incomplete solution to a problem is never as good
as a complete solution, but it is much better than no solution whatsoever.

The situation in computational linguistics can also be understood in these terms. There
are many problems which need to be addressed: transliteration, machine translation, anaphora
resolution, etc. On the one hand, we want to define a problem, understand its instance space and
solutions, and prove that a particular algorithm solves this problem, preferably efficiently. This is
formal grammatical inference. On the other hand, however, in the absence of such results that can be
immediately deployed for everyday useful tasks, empirical grammatical inference develops learning
systems that aim to be immediately useful on particular tasks or particular problem instances.

There are many other ways to look at the learning of (natural language) grammars. For
instance, one area of research aims to develop cognitive models of language learning. In this
area, properties of theoretical models are compared against the performance of human learners.
It still is not clear exactly what a cognitively realistic model of language learning should include.
Another approach has been called evolutionary language learning. It models language learning over
generations. Once the learner has learned a model, it becomes the oracle of the next generation.
These models are often investigated as social processes, with multiple oracles and multiple learners.
These kinds of views on learning are beyond the scope of this book.

The next two sections provide an introduction in the two areas discussed in this book. First,
formal grammatical inference will be introduced, followed by empirical grammatical inference. The
rest of the book follows a similar line. In Chapter 2, formal grammatical inference is discussed in
detail. Chapter 3 concentrates on learning regular languages (see below), primarily from the perspec-
tive of formal grammatical inference, although some empirical grammatical inference algorithms
are mentioned. Chapter 4 deals with learning non-regular languages, and mostly in the context
of empirical grammatical inference (though again some formal grammatical inference algorithms
are mentioned). Finally, Chapter 5 summarizes the field, describes open questions, and highlights
lessons learned so far.

1.3 FORMAL GRAMMATICAL INFERENCE
During the informal description of grammatical inference in the first part of this chapter, we already
mentioned some possible choices for modeling the learning process. In order to allow us to be explicit
about what the entire process looks like, we will have to come up with a way of describing all the
details of the process. Essentially, the same holds for the descriptive power of our grammar (which is
going to describe the language that we are aiming to learn). Fortunately, the language of mathematics
allows us to formally describe the learning process as well as the model of the language.
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6 1. STUDYING LEARNING

Having mathematical descriptions of the grammar and the learning process allows us to
reason about the possibilities (and impossibilities) of (efficient) learnability. In other words, we can
mathematically prove whether it is possible that a particular language (or group of languages) is
learnable in that particular learning setting.

Before we can come up with mathematical proofs, we need to formalize all aspects of the
learning process. When modeling language learning in a mathematical way, we need to have formal
descriptions of the language we are trying to learn and a representation (a grammar) that allows us to
represent the language we are learning. Additionally, we will need to describe the learning process,
which consists of a description of how the interaction between the oracle, which provides information
on the language, and the learner takes place as well as how success of learning is measured. Together,
all of these items will determine the instance space of the learning problem.

In the next three sections, we will describe each of the aspects in more detail. First, we will
take a look at the relationship between languages and their representation. Second, we describe how
languages can be grouped in families according to linguistic properties the languages share. Finally,
we will focus on properties of the learning process and indicate that the learnability proofs can be
based on properties of language families, which allows us to generalize learnability from one language
to a family of languages.

1.3.1 LANGUAGE AND GRAMMAR
From a formal perspective, a language is seen as a set of strings. This set may be finite or infinite
and the corresponding language is called finite or infinite, respectively. For instance, the language
that describes all English words representing the numbers from 1 to 10 is finite: {one, two, three,
four, five, six, seven, eight, nine, ten}. Obviously, finite languages may still be very large; for instance,
imagine the formal language containing all possible English sentences with fewer than 100 words.1

This language is finite, but quite large.
Representing a finite language can be done by simply enumerating all strings in the set. The

case of infinite languages is harder, because we would like to represent the infinite language with
finite means (time, amount of paper, etc.). In order to represent an infinite set with finite means, we
need an additional syntax to describe the exact way in which the infinite set is represented.

Imagine we want to describe the language that contains of all strings that consist of any number
of a’s: {a, aa, aaa, . . . }. In the previous sentence, we have already provided two informal “grammars”
which describe the right language in finite ways. The first used a natural language description: “the
language that contains all strings that consist of any number of a’s”. This description, which contains
13 words, is a finite description of this language. The second relied on some syntax, namely the

1. Technically, one would require a finite alphabet, so only words “from the dictionary” are allowed.
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1.3 Formal Grammatical Inference 7

symbols: . . . , {, and }. Additionally, we have used a comma and a list of example strings. If we
give a description of the language using these symbols, we presume that the reader of the informal
grammar understands what we mean by these symbols. In this informal way, we can communicate
which infinite language we are thinking of with a finite means using the words and notation above.

Describing a language using a grammar requires a notation and an interpretation of this
notation. In the previous paragraph we have used an informal (natural language) and somewhat
less informal description with some mathematical symbols. Informal descriptions have several
disadvantages. First, they are often ambiguous. In our natural language description, for instance,
it is unclear whether the empty string—the string which has no as or any other symbols—is also
part of the language or not. Second, there are many different ways to describe the same language.
Some descriptions may be quite understandable, but for others it may be very hard to figure out
exactly what language they represent. Third, informal descriptions can make it hard to identify
important properties of the language.

Using formal descriptions of languages solves most of the problems of informal descriptions.
In the case of formal descriptions, the language is described using symbols that have a predefined
meaning. First, formal descriptions are unambiguous. The “grammar” of mathematics describes
exactly how we should combine symbols into a coherent, meaningful whole. Additionally, each
symbol has its own meaning or interpretation that we all agree on. Note that this requires that we
all need to agree on how these symbols are used. This is why Section 1.6 contains an overview of
the mathematical notations used in this book.2

To summarize, we want to be able to describe languages, which may be infinite. To represent
the languages, we require grammars. Each grammar (which is guaranteed to be finite) represents
its own (possibly infinite) language through an interpretation. To describe the language in a finite,
unambiguous way, a grammar is denoted using mathematical symbols.

Having access to mathematical descriptions of formal languages clearly has advantages, as
discussed above. However, if our aim is to say something about learning natural languages, we need to
know which kinds of grammars can describe the aspects of natural languages that we are interested in.

Currently, there is still some debate about which formalism will allow us to describe natu-
ral languages most accurately. A range of formalisms is being used to describe natural languages.
For instance, several context-sensitive formalisms are currently being investigated for their ability
to naturally and efficiently describe aspects of natural language syntax, such as multiple context-
free grammars (mcfgs), minimalist grammars (mgs), and Tree-Adjoining Grammars (tags)

2. We realize that this reasoning does not completely hold, because we describe the mathematical symbols using (potentially
ambiguous) natural language. However, the problem of ambiguity is reduced by describing the meaning of the symbols as
much as possible out of context. This means that the meaning is described in a generic way.
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8 1. STUDYING LEARNING
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FIGURE 1.2: The relationship between strings, languages, and language families.

[Joshi 1985, Seki et al. 1991, Stabler 1997, 2011]. Also in wide use in natural language processing
are finite-state acceptors and transducers, which are different (but related) kinds of finite-state
grammars. Grammar formalisms such as these will be defined as they are needed throughout
the book.

1.3.2 LANGUAGE FAMILIES
So far, we have talked about ways of describing a specific language. It is tempting to think of a
specific, particular language as the target of the learning problem. However, this is a mistake akin
to thinking of the sorting problem as the problem of sorting a specific list. A particular language is
an instance of a more general problem, just like a particular list is an instance of the more general
sorting problem.

A collection of languages is called a family of languages. For instance, a language that only
contains a finite number of strings is called a finite language. The family of finite languages is the
set containing all and only such languages. In a similar line, natural languages are all and only those
languages spoken or written by people. More generally, a family of languages can be defined in terms
of one or more properties.

Figure 1.2 visualizes the relationship between strings, languages and families of languages.
The left square describes the collection of all possible strings. A dot in that square represents a
specific string. This square should be understood to contain all logically possibly strings (and thus
infinitely many strings). A language, represented by an ellipse in the figure, describes a (possibly
infinite) set of strings belonging to the language. The right square represents the collection of all
possible languages. A dot in the right square represents one language. One such language corresponds
to an ellipse in the left square. An ellipse in the right square denotes a family of languages, which is
a (possibly infinite) set of languages.

One issue which arises when defining a learning problem is defining the set of learning targets.
One way this has been accomplished is with language families. For example, for any language L in
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1.3 Formal Grammatical Inference 9

RL CFL CSL REL

FIGURE 1.3: The Chomsky Hierarchy, with REL: recursively enumerable languages; CSL: context-sensitive
languages; CFL: context-free languages; and RL: regular languages. The semitransparent ellipse represents a
cross-cutting class.

this family, it would be desirable at the end of the learning process that the learning algorithm
outputs a grammar which is an accurate description of L. With regard to natural languages, it would
be desirable to find a class of formal languages which is sufficiently expressive to describe some aspect
of natural languages, and to make this the set of learning targets.

It is useful to mention at this point that formal language theory has investigated many families
of languages, and has achieved remarkable success in understanding how these families are related
and the different grammatical formalisms that can be used to generate, represent, and distinguish
languages in these families. The Chomsky Hierarchy includes the most well-known languages in
this class and is shown in Figure 1.3. The languages in each family are united by their common
property of being expressible with a particular grammatical formalism. Section 1.6 provides formal
definitions for these grammars and families of languages.

There are several other, less well-known, families of languages that have been studied and
new families of languages are being identified. These families cross-cut the families in the Chomsky
Hierarchy and include both subregular classes and non-regular classes. While formal grammatical
inference clearly addresses learning problems where the families of the Chomsky Hierarchy make
up the learning targets, it is also interested in other families of languages as well.

1.3.3 LEARNING LANGUAGES EFFICIENTLY
Thus, one aim of formal grammatical inference can be said to identify families of languages and
develop algorithms that provably efficiently learn languages within the family in a particular learning
setting. With respect to computational linguistics, the aim can be said to find a formal description
of a family of languages that can be said to contain all natural languages, and at the same time can
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10 1. STUDYING LEARNING

be shown to be efficiently learnable in a learning setting that corresponds most closely to the real
world (for instance, the learning setting that most closely corresponds to human early life).

Describing a learning setting requires two design choices. First, what does the process of
interaction between the learner and the oracle look like? In one setting, it might be the case that the
oracle simply provides information, which the learner can use. The information may only include
examples of valid strings from a target language (so-called positive data) or it may only include
examples of both valid and invalid strings from the target language (positive and negative data). In
another setting, the learner might be permitted to question the oracle regarding whether strings
belong to the target language and the oracle may be required to answer truthfully. Questions on how
to deal with oracles which are sometimes untruthful (i.e., noise), and implicit or explicit feedback
of the oracle also belong to this design choice.

The second design choice regards what constitutes a successful solution to the learning
problem. One setting might require the grammar output by the learner to represent a language
which is identical to the language of the oracle. Alternatively, the learning setting may allow the
grammar to represent a language which differs from the language of the oracle, but the errors are
limited in some way. Settings can also be used to impose efficiency conditions on learning algorithms
which limit the number of computations it can make during the process. Consequently, an algorithm
which is successful at learning a family of languages in a setting with no efficiency conditions may
fail to learn the same family in a setting which imposes some. The choice of setting defines what
“learning” means.

Results in formal grammatical inference are proofs of theorems whose statements are some-
thing like “Algorithm A in learning setting S successfully learns the family of languages L”. The
setting S contains all the important details about the kind of information the learner receives, the
requests it makes, and what counts as success. We find it interesting that the proofs of these theorems
often rely on a subtle interplay between the requirements of the learning setting S and the properties
of the family of languages L. Different learning settings, families of language, and learnability results
are described in Chapters 2 and 3.

1.4 EMPIRICAL GRAMMATICAL INFERENCE
Empirical grammatical inference starts with the notion that natural languages are efficiently learnable
because people manage to learn them. This means that the language should be learnable given an
appropriate input. If we can develop systems that are able to learn these languages, we can then
analyze properties of these systems. The identified properties can form the basis of learnability proofs
in the area of formal grammatical inference. At the same time, empirical grammatical inference leads
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1.4 Empirical Grammatical Inference 11

to deployable systems that work well enough to be used in tasks involving the learning of natural
languages.

Empirical grammatical inference is also motivated in part by the following concerns. First, for
most, if not all, natural languages, we do not have a complete and correct grammatical representation
available. For grammatical inference, this means that the model of the oracle (MO in Figure 1.1)
cannot be made explicit in any way. It also means that we do not know exactly where the family of
natural languages is located in the hierarchy represented in Figure 1.2.

A second concern is that there is a debate on exactly how the interaction between the oracle
(say, the parent) and the learner (the child) occurs. It is clear that the learner receives example strings,
such as sentences, or words, from the oracle. For instance, the oracle (parent) speaks to the learner
(child). However, the learner may perhaps also receive additional information, in the shape of non-
verbal communication, such as the oracle pointing to objects. Additionally, the learner can also speak
to the oracle and if the oracle reacts in a certain way, the learner may believe that the oracle correctly
interpreted the utterance and this may also be a source of information for the learner.

The combination of language representation with the shape of the interaction leads to addi-
tional choices. Perhaps the language representation should be able to encode semantic information.
If this is possible, it leads to the additional problem that the semantics also need to be learned and
grounded in the real world or the learner’s model of the real world.

The same questions that need to be asked in the field of formal grammatical inference to
design learning settings (language family, learning process and evaluation) are just as relevant in the
field of empirical grammatical inference. However, due to the different starting point of empirical
grammatical inference with respect to its formal counterpart, some distinct choices are made. These
will be discussed briefly in the following sections and in more detail in Chapters 3 and 4.

1.4.1 LANGUAGES, GRAMMARS, AND LANGUAGE FAMILIES
Like formal grammatical inference, empirical grammatical inference systems learn from example
strings, such as sentences or words. Depending on the type of string, different languages are learned,
for instance, the language of natural language sentences, which corresponds to describing syntax, or
the language of words, which requires a grammar of morphology.

Also, like the algorithms developed in formal grammatical inference, the outputs of empirical
grammatical inference algorithms are grammars. However, unlike formal grammatical inference,
the target of learning is not necessarily a family of languages. The ultimate aim of an empirical
grammatical inference system is to be able to learn the language that underlies the input data it is
given. This means that the learning system should essentially be language independent. This does
not necessarily mean that the same system should be able to learn every aspect (syntax, morphology,
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12 1. STUDYING LEARNING

etc.) of every natural language. Some systems may focus on identifying word boundaries in a stream
of phonemes, learning rules of word or sentence formation, or something else. The only requirement
is that the description of the language is done according to a grammar (which, just like in formal
grammatical inference, is a finite representation of the language).

One difference between formal and empirical grammatical inference is that the target of
empirical grammatical inference can be construed as one or a small number of particular languages,
whereas the target of formal grammatical inference is a class of languages. As we discuss below,
empirical grammatical inference uses data from a small number of specific languages, and the
performance of the system is measured by comparing the learned grammar against a gold standard,
which is taken to be their grammars, which are known only to an oracle.

1.4.2 EVALUATION
The evaluation methods discussed in the context of formal grammatical inference measures the
performance of learning algorithms in vitro (or perhaps better named in silico). In this situation,
the problem space is known in advance and so are the solutions to the problem instances. What
is unknown is an algorithm which maps problem instances to their solutions. However, once an
algorithm is proposed, evaluation can proceed in part by comparing its output on a problem instance
directly against (a grammar of ) the target language. In contrast, research in the area of empirical
grammatical inference measures the performance of empirical systems in vivo. The performance
of the systems is measured in the context of an application. Thus, empirical grammatical inference
systems can be evaluated both extrinsically by using the algorithm as a component in a larger system
and intrinsically by comparing measures like precision and recall to a gold standard.

The aim of empirical grammatical inference systems is to learn the grammar of the language
which performs best on some task, or range of tasks, as possible. Thus, in empirical grammatical
inference, the problem is one of optimization: What algorithm exists that outputs a grammar whose
behavior on a task is optimal?

Obviously then, to know exactly how well the learned grammar behaves, evaluation criteria
are needed. Different situations may require different evaluation criteria to determine how well the
system is doing. For instance, if we are interested in learning only specific syntactic constructions,
there is no need to evaluate against the entire target language. We only want to know to what extent
the constructions we are interested in are being learned correctly.

Ideally, for the problem of language identification, the learned grammar (that of the learner,
ML) should completely cover the target language (described by MO) while at the same time no
additional strings (not part of the target language) should be accepted by the learned grammar.
Even though the system should learn the language completely and correctly, in practical situations
(for example in which no full description of the target grammar is known, such as in the case of
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1.5 Summary 13

natural languages) this proves to be difficult. Evaluation metrics that indicate to what extent the
grammar is complete and correct show us how close we are to a particular goal.

Another way empirical grammatical inference algorithms can be evaluated is via their incor-
poration into pre-existing natural language processing systems. Applications that deal with strings,
such as speech-driven dialog systems and information extraction systems, often need to know how
to deal with unexpected input. In the case of natural languages, this may, for instance, be in the form
of new words or syntactic constructions. Since grammatical inference algorithms generalize beyond
their input, incorporating a learning algorithm in an application may be used to make the application
more robust in dealing with unexpected input. If incorporating the grammatical inference system
(or an alternative implementation of such a system) improves the performance of the overall appli-
cation, then we can attribute the increase in performance to the newly added grammatical inference
module.

1.5 SUMMARY
To summarize, both formal and empirical grammatical inference have their roles to play in compu-
tational linguistics. While the two areas of research may seem quite different, there are quite a few
similarities.

At the start of both research processes, one of the first questions one encounters is the bias
decision (see Section 2.5 for a discussion on bias), which consists of making a guess about which
grammars correspond best with the language(s) we are trying to learn. Exactly which class of
grammars is selected is based on at least two reasons. First, we need to believe that the class of
grammars we select is going to be strong enough to be able to describe the language(s) we are trying
to learn and that it has other properties, such as probabilistic variants, necessary for the problem
at hand. Second, algorithms which can learn these grammars from some input should either be
inadequate in some way or non-existent. Otherwise, it would not be research!

Both formal and empirical grammatical inference are attempting to learn grammars from
data (either explicitly present or not). The techniques used can be very similar, if not identical. The
primary difference is how success is measured. In formal learning, we are primarily going to measure
success by transforming an ill-posed learning problem into a (mathematically) well-posed one and
proving an algorithm solves this problem. For the result to be useful in a deployable system, it must
be the case that the problem we face in the real world is an instance of this formal problem. If not,
then all bets are off. For example, an algorithm which provably efficiently learns a family of languages
probably will not be very effective in a natural language processing system if natural languages do
not belong to this family of formal languages.
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14 1. STUDYING LEARNING

In empirical learning we will (usually) be measuring success with respect to a gold standard,
which is a proxy for the “true” answer. This type of evaluation does not make the assumption that
what we had to learn belongs to one family or another: the aim is to learn a grammar whose behavior
on some task is as close as possible to the gold standard (according to the evaluation metric).

1.6 FORMAL PRELIMINARIES
In order to be precise when discussing learning, it is essential that the meaning of all the terminology
is clear. In this section we will introduce several concepts that will be used throughout the book.

However, we will assume the readers are familiar with certain concepts and notation. For
instance, we assume a basic familiarity with set theory and its notation, such as the empty set
(∅), union, intersection, and set difference (∪, ∩, \). Moreover, given a set X, we will write |X|
for the cardinality of X. The symmetric difference between two sets (or languages) A and B is
A ⊕ B = (A \ B) ∪ (B \ A).

We also assume familiarity with the standard logic and will make use of the logical connectives
representing “and,” “or,” negation, implication, and bi-conditional (∧, ∨, ¬, ⇒, ⇔, respectively),
the universal and existential quantifiers (∀, ∃, respectively).

We also assume a basic familiarity with computational complexity theory and an understanding
of O notation and awareness of terms such as P, N P, and N P-complete. For readers unfamiliar
with these terms, we recommend the following texts: Garey and Johnson [1979] and Cormen [2013].

Grammatical inference deals with learning representations of languages. This requires us to
be precise about what a language is. Informally, a language contains strings. These strings are made
up out of symbols. These symbols come from the vocabulary.

Definition 1.1 (Vocabulary or alphabet) A vocabulary or alphabet is a finite, non-empty set of
symbols �.

In the natural language context, for instance, a vocabulary might be the set of words, when
describing syntax (with the potential problem that it is possible to generate new words, for instance
through compounding, which might lead to a theoretically infinite set of symbols), or phonemes,
when describing phonological representations.

Based on the vocabulary, we can create strings, which may also be called sequences.

Definition 1.2 (String) A (finite) string w = a1 . . . an is a possibly empty, finite, ordered list of
symbols. We write λ for the unique string of length 0 (called the empty string) and |w| for the length
of w. Thus n = |w|. �∗ denotes the set of all finite strings over �.

With strings we can now define languages.
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1.6 Formal Preliminaries 15

Definition 1.3 (Language) A language L is a possibly infinite set of strings: L ⊆ ��. Let N denote
the set of non-negative integers. For all k ∈ N, let �≤k = {w ∈ �� : |w| ≤ k} and �>k = {w ∈ �� :
|w| > k}.

We say that u is a subsequence of v, denoted u � v, ifdef u = a1 . . . a|u| and there exist
v0, . . . , v|u| ∈ �� s.t. v = v0a1v1 . . . a|u|v|u|.

We say that u is a substring of v ifdef there exist two strings l and r , possibly empty, such that
v = lur .

For any finite set of strings L, we let ‖L‖ be the sum of the lengths of the strings in L. We
will write |L| for the cardinality of L.

The concatenation of two languages L1 and L2 is written L1L2 and is defined to be L1L2 =
{wv | w ∈ L1 and v ∈ L2}. It is also useful to define the Kleene star operation with respect to
languages. The Kleene star of a language L is another language written L∗ and is defined recursively:
λ ∈ L∗ and for all w ∈ L, w ∈ L∗ (the base cases) and w, v ∈ L∗ ⇒ wv ∈ L∗ (the recursive case).

Note that the formal descriptions of languages, symbols in � and strings from �� are simply
formal concepts. Depending on what symbols are available in � and hence can be used in ��, people
might assign specific meaning to these symbols, strings, and languages. However, from a formal
perspective, these definitions do not require the assignment of a particular meaning. To describe
exactly which strings are an element of a particular language, a representation of the language is
required. This is done using a grammar.

Definition 1.4 (Grammar) A grammar GL is a finite representation that describes a (possibly
infinite) language L.

Exactly how a grammar describes the infinite language depends on how it is interpreted.
While a grammar defines just one language, languages which admit common grammar formalisms
(i.e., a common notation and interpretation) form a family of languages.3 It is useful in this regard
to define classes of grammars and the families of languages that are associated with them.

Definition 1.5 (Language and grammar families) A class of languages L is represented by the
grammars of a class G. L and G are related by a naming function L : G → L that is total (∀G ∈
G , L(G) ∈ L) and surjective (∀L ∈ L, ∃G ∈ G such that L(G) = L).

In words, any language in L admits a grammar from G. For any string w ∈ �� and language
L ∈ L, we will write L |= w ifdef w ∈ L. This corresponds to the notion of being able to recognize

3. Technically, there is a difference between a family (the family of regular languages), which is an abstract notion but not a
set, and a class of languages over some fixed alphabet �. In the latter case, mathematical manipulations are possible. We will
nevertheless not make this difference in the sequel, and use freely both terms, with an implicit alphabet when so required.
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16 1. STUDYING LEARNING

whether string w belongs to language L. Additionally, the grammars should be understood as
allowing a given parser (whatever it may look like) to recognize the strings. For any string w ∈ ��

and grammar G ∈ G, we will write G � w if the parser recognizes w. Basically, the parser must be
sound and complete with respect to the interpretation: G � w ⇐⇒ L(G) |= w.

There are many ways to write grammars. Mathematically, grammars can be sets of strings, or
tuples of sets or other finite objects. It is possible to develop universal coding systems; for example,
sets and tuples themselves can be expressed as finite strings (in fact, every finite string, and thus
grammar) can be expressed with a unique positive integer [Rogers 1967]). Thus, the naming function
and the finite grammar itself are deeply interwoven concepts. Together, they allow us to decide what
strings are recognized by the (potentially infinite) language the grammar describes. Consequently,
there are several ways languages can be described. We illustrate this diversity of grammars with the
regular languages.

One particular grammar formalism is that of deterministic finite-state acceptors.

Definition 1.6 (Deterministic finite-state acceptor (dfa)) A deterministic finite-state acceptor is a
quintuple 〈� , Q, q0, F , δ〉 for which

. � is the finite set of input symbols, corresponding to the vocabulary;

. Q = {q0, q1, . . . , qN−1} is the finite set of N states;

. q0 is the start state;

. F is the finite set of final states (F ⊆ Q); and

. δ : Q × � → Q is the transition function. Given a state q ∈ Q and input symbol i ∈ �, either
δ(q , i) is undefined or it returns a state q ′ ∈ Q.

We refer to the class of dfa with GDFA. We also let the size of a dfa be given by its number of
states: ‖〈� , Q, q0, F , δ〉‖ ≡ |Q|.

How do we identify the strings recognized by a dfa? In other words, what is the naming
function? How are these objects interpreted? These questions are answered as follows. For each
dfa, δ recursively defines a function δ∗ : Q × �� → Q. For all q ∈ Q, let δ∗(q , λ) = q and, for all
u ∈ ��, a ∈ �, let δ∗(q , ua) = δ(δ∗(q , u), a). (If δ∗(q , u) is undefined or if for some q ∈ Q and
a ∈ �, δ(q , a) is undefined then δ∗(q , ua) would then also be undefined). For each dfa A, the
language of A is L(A) = {w ∈ �� | δ∗(q0, w) ∈ F }. The class of regular languages contain exactly
those languages for which a dfa exists which describes it.

Definition 1.7 (Family of regular languages) LRL = {L | (∃A ∈ GDFA)[L(A) = L]}
Note that other representations, such as regular expressions (also used in several programming

languages), can also be used to describe exactly all regular languages.

Definition 1.8 (Regular expression) Given �, a regular expression is defined recursively as follows.
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1.6 Formal Preliminaries 17

1. The base cases:

1. ∅∅∅ is a regular expression.

2. λ is a regular expression.

3. For all σ ∈ �, σ is a regular expression.

2. The recursive cases:

1. If R is a regular expression then (R∗) is a regular expression.

2. If R and S are regular expressions then (RS) is a regular expression.

3. If R and S are regular expressions then (R + S) is a regular expression.

3. Nothing else is a regular expression.

While the definition above is suggestive, it is important to realize regular expressions are just strings
of uninterpretable symbols at this stage. To relate them to languages, we will need to make use of
an explicit naming function. This is accomplished recursively as follows.

1. The base cases:

1. L(∅∅∅) = ∅

2. L(λ) = {λ}
3. ∀σ ∈ � , L(σ) = {σ }

2. The recursive cases:

1. L(R∗) = (L(R))∗

2. L(RS) = L(R)L(S)

3. L(R + S) = L(R) ∪ L(S)

The following theorem is a remarkable fact.

Theorem 1.1 (Kleene’s Theorem) Every language definable with a regular expression is definable
with a dfa and vice versa.

Another grammar formalism is that of context-free grammars (cfgs).

Definition 1.9 (Context-free grammar) A context-free grammar is a quadruple G = 〈V , � , S , R〉
for which

. V , the finite set of non-terminals;

. �, the finite set of terminals;

. S ∈ V , the start non-terminal; and

. R ⊂ V × (V ∪ �)∗ is the set of productions (grammar rules).

For all (A, β) ∈ R, we often write A → β. We refer to the class of cfgs with GCFG.
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18 1. STUDYING LEARNING

Again, we can ask what is the naming function for context-free grammars? How are they
interpreted? The language of a context-free grammar is defined as follows. The (partial) derivations
of a cfg G = 〈V , � , S , R〉 is written D(G) and is defined recursively as follows.

1. The base case: S belongs to D(G).

2. The recursive case: For all A → β ∈ R and for all γ1, γ2 ∈ (V ∪ �)∗, if γ1Aγ2 ∈ D(G) then
γ1βγ2 ∈ D(G).

3. Nothing else is in D(G).

Then the language of the grammar L(G) is defined as L(G) = {w ∈ �� | w ∈ D(G)}.
Based on the definition of context-free grammars, we can define context-free languages.

Definition 1.10 (Family of context-free languages) LCF = {L | (∃G ∈ GCFG)[L(G) = L]}
It is another remarkable fact that every regular language is context-free, but not vice versa.

Theorem 1.2 ([Scott and Rabin 1959]) Regular languages are a proper subset of context-free
languages.

The two theorems above show what is possible when a grammar formalism is introduced.
They help realize what the expressive power of the grammar formalism is.

The Chomsky Hierarchy (Figure 1.3) describes the expressive power between four well-
known families of languages: regular languages (also called type 3), context-free languages (type
2), context-sensitive languages (type 1), and recursively enumerable languages (type 0). The first
two have already been defined.

Context-sensitive languages can be described using context-sensitive grammars, which are
very similar to context-free grammars, with the difference that all productions in R are of the
form αAβ → αγβ with A ∈ V , α and β ∈ (V ∪ �)∗, and γ ∈ (V ∪ �)+. Recursively enumerable
languages (also called computably enumerable) are languages for which a Turing machine exists that,
for every string in the language, correctly answers “yes” if asked whether the string belongs to the
language.4

If context-free languages are more powerful than regular languages, why even consider or use
regular languages? Or, in that same line of reasoning, why even consider context-free languages and
not go all the way for recursively enumerable languages?

4. The Turing machine can be thought of as a grammar for this language. Note it does not have to answer if asked about
a string which does not belong to the language. Languages for which there exists a Turing machine which has to answer
correctly about the membership of every string in �� form the recursive class of languages. This class is a proper subset of
the recursively enumerable languages and properly contains the context-sensitive languages.
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1.6 Formal Preliminaries 19

One answer is that there appears to be a trade-off between generative power and efficiency. For
instance, recognizing membership of strings in regular languages can be done in linear time, T (n) =
O(n); recognizing membership in context-free languages can be done in cubic time, T (n) = O(n3);
and for more powerful language families, such as context-sensitive languages, this is worse. In fact,
it is P-space complete.5

Another reason comes from the perspective that scientific theories and hypotheses ought to
be strong and falsifiable. So if one’s theory of natural language is that anything computable is a
natural language then that is the weakest theory possible that makes no falsifiable predictions (at
least under the Church–Turing thesis). It follows that the hypothesis that all natural languages are
describable with dfas is a stronger scientific hypothesis than the one that says all natural languages
are describable with cfgs. The evidence is, however, that this hypothesis is not correct [Chomsky
1956, Shieber 1985].

It is for these reasons that the goal to identify the smallest family of languages that contains
all possible human languages (or the smallest family of languages relevant to some aspect of human
language) is reasonable. This may not necessarily be one of the families in the Chomsky Hierarchy;
instead it may be one that cross-cuts those classes as shown in Figure 1.3.

5. In complexity theory, a problem is said to be P-space complete if it is hardest between all problems which can be solved
with a Turing machine which uses memory polynomial in the size of its input. The generally accepted conjecture is that
this means that no reasonable (polynomial-time) algorithm exists.
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C H A P T E R 2

Formal Learning

2.1 INTRODUCTION
The goal of this chapter is to show a global picture of the formal issues and results in grammatical
inference. A more extensive survey can be found in de la Higuera [2010]. The theory underlying
grammatical inference rests upon a number of pillars such as the theory of languages and automata
[Sudkamp 2006], their probabilistic counterparts such as hidden Markov models [Rabiner 1989],
and basic concepts from computational complexity [Sanjeev and Boaz 2009], computational learning
theory [Kearns and Vazirani 1994], and information theory [Cover and Thomas 1991].

2.1.1 THE ISSUES OF LEARNING
Grammatical inference is about learning a grammar given information about a language. Generally
speaking, the information a learner is going to have access to concerns a language: if in linguistic
terms a language may have a meaning rendered complex by the point of view with which one is
approaching these questions, in mathematics a language is just a set of strings.1 This set may be
infinite, each string having some simple semantic feature associated with it, which may be just a
label indicating if the string belongs to the language or not, or, more informatively, the structure (or
parse tree) of the string, or even its probability depending on some given distribution. The learner
might be given access to a large quantity of sentences (a corpus), which may be organized, and which
may be annotated. The learner is in some settings able to interrogate an expert (or alternative sources
of data) in order to obtain responses to queries: Does this string or sentence belong to the language?
How can we complete this sentence? What are the most frequent sentences in the language? Can
this sentence be annotated? Translated?

With this information the learner’s goal is to build a representation of the language: the
representation will typically be a finite-state machine (which allows one to recognize the sentences
from the language), a grammar (which can be used to generate sentences from the language), or
another formalism (a regular expression will define the set of sentences in the language).

1. As described in the previous chapter.
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22 2. FORMAL LEARNING

The fact that a learner will build its own formalism of the intended language poses an
interesting question: If two learners build two different-looking grammars, how can they agree that
they are using the same language? The answer to this question is in many cases negative: they cannot
(the problem of deciding equivalence between two grammars, for many classes, is intractable). This
is a serious hint that learning grammars is a difficult task. A puzzling scenario allowing us to solve
the equivalence problem for two grammars G1 and G2 could be the following: a learner tries to learn
from data generated from G1, and obtains G′

1, does the same from G2, obtaining G′
2. Now, should

not G′
1 and G′

2 coincide, in a syntactic sense?
When learning only from strings, which is also usually called unsupervised learning, an

attractive alternative is to build a probabilistic artifact. A probabilistic context-free grammar, a
probabilistic finite automaton, or a hidden Markov model will each associate a quantity with a
string, typically defining the probability of that string. In this case, the notion of associated language
may not be meaningful: if we just talk about the language of all strings that have non-null probability
then we may have two very different distributions that would be equivalent as far as their associated
languages are concerned. Furthermore, this would not even prove useful. Another definition would
be to say that a string is in the language when its probability is above a given threshold. This tempting
definition leads to severe computational problems as, even in the case where the distribution is
produced by a finite-state machine, a number of associated problems are intractable, like (1) knowing
if such a language is finite or (2) finding the most probable string.

Probabilistic finite-state automata (pfa) can be seen as a special case of transducers: these are
finite-state machines taking strings as inputs and also as outputs. In the case of pfa the outputs are
probabilities. Generalizing, the output can be a multiplicity or even another string (the translation
of the first one). In a broad sense, when grammatical inference deals with transducers, the goal is to
learn functions which take as inputs strings.

2.1.2 LEARNING SCENARIOS
Depending on the intended application, the learner will have access to the data in one way or another.
The way we receive the data, the price we have to pay for it, or the richness of the information received
are all going to matter. Let us explore some typical learning settings.

Batch learning is a situation where we are given a (usually large) number of strings. These strings
may come with extra information: a label for each string in the case of a classification task,
tags attached to substrings, brackets inside the string, or a weight. Two typical settings are
those of learning from text where only strings from the language are given to the learner, and
learning from an informant where the strings from which one is to learn are labeled with 1 or
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0 depending on the fact that they belong or not to the language. The learner is supposed to
build a hypothesis from this sample.

Online learning is a very typical setting from a theoretical point of view: a learning situation
where the learner receives the items of data one after the other and is supposed to build a
new hypothesis after having seen each new learning example. Gold [1967] introduced this
setting in order to show that certain learning algorithms had strong convergence properties
(identification in the limit): the infinite process (new example → new hypothesis) is supposed
to converge to just one grammar being produced after a finite number of steps, provided some
completeness conditions are met concerning the presentation of the examples. It has also been
argued that this learning situation is well suited to represent the language acquisition task a
child has to face.

Active learning is a setting where no data is available at first, or where only unlabeled data is
available. The learner then has not only to learn (generalize, induce, etc.) but to query the
environment in order to obtain its data or a labeling of this data. Typically the learner will
attempt to find out if a particular string belongs to the language or not (membership query) or
will ask for some extra information about a string present in the data set.

Interactive learning is a special case close to the previous one—the learner classically attempts to
automatically build the model, but will interact with an oracle, through some query system:
typically the oracle can intervene by correcting some decision made by the learner.

2.1.3 LEARNING GRAMMARS OF LANGUAGES
A first non-trivial question is that of deciding if we are to learn grammars or languages. If common
knowledge tells us that this is about language, about learning or acquiring a language, we will argue
that since the goal is to study effective ways of learning, there is always a representation issue.
Furthermore, a number of results show that for a given class of languages, there will be considerable
differences between learning one type of representation rather than another.

Having decided that we need to learn a grammar, we now have to choose what type of grammar
we require. We will discuss in Section 2.3 the different arguments that should be considered when
making this choice. For the moment, and without entering into precise definitions which can be
found in a number of textbooks and research articles, let us list some of the most common and
important types of finite-state machines and grammars:

. finite-state machines that recognize languages: deterministic finite-state automata and their
non-deterministic counterparts;

. finite-state machines that define distributions over strings: probabilistic automata or hidden
Markov models;
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24 2. FORMAL LEARNING

. finite-state machines that describe or generate transductions, or translations from one lan-
guage to another; and

. context-free grammars that are also used to recognize, generate, and describe more complex
structural rules.

2.2 LEARNABILITY: DEFINITIONS AND PARADIGMS
Learning is a complex phenomenon. It has been argued that it is about compression, encoding,
discovery of patterns, and even the capacity of forgetting. Let us explore some mathematical
definitions in which the convergence of learning, speed, and quantity of resources needed to learn
can be analyzed.

2.2.1 BLAME THE DATA, NOT THE ALGORITHM
At first, learning seems to be an ill-posed problem. Suppose we have a learning algorithm which
on some data returns a grammar. Why should one learned grammar be better than another? Why
should this grammar even be the right grammar? After all, the learner has only had access to a finite
quantity of data!

In order to transform the seemingly ill-posed learning question into a well-posed question
whose solution does give us insights to what learning can mean, we transform it into a convergence
problem. Learning is going to be measured as the convergence toward a stable and good solution.
In an ideal world, one would hope to have this convergence depend on a magic number: as soon as
a given quantity of information or data is available, the intended grammar would be learned. But
many things can go wrong: the data may not be representative or, even when it is, we may be facing
some intractable problem. It is therefore necessary to impose some conditions on the data in order
to secure a learning result, which will therefore always be read as: provided the data available has
a minimal quality (with respect to a target and the criterion we impose), we can ensure that the
solution is good. Ensuring might still depend on some probabilistic notion, and good will often also
be probabilistically founded.

2.2.2 A NON-PROBABILISTIC SETTING: IDENTIFICATION IN THE LIMIT
The first important definition is due to Gold [1967]: identification in the limit . In this learning setting,
the learner has access to a never-ending supply of information about the language to be learned. This
may be the actual strings from the language, or labeled strings indicating if they belong or not, or any
specifics about the language. The important thing is that the presentation of this information has
to be complete: all the possible information has to be presented eventually. For example, if learning
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2.2 Learnability: Definitions and Paradigms 25

from text , which is the modality of learning from positive examples only, each string in the language
should appear at some point or another.

After receiving each piece of information the learner is to return a hypothesis. For a class of
grammars to be identifiable in the limit it is required that given any grammar G in the class and any
complete presentation of L(G), there is a point where the learner begins to systematically output a
hypothesis grammar G′ (convergence) and L(G′) = L(G) (correctness). By a complete presentation
we mean that each admissible information is presented at least once.

Example 2.1 Let us consider the case of the regular languages. These can be represented with
deterministic finite automata (dfa). If the type of information we are learning from consists
of examples and counter-examples, the setting is called learning from an informant . A complete
presentation pres of a language L will present pairs (w,1) and (w,0) such that on one hand
{w : (w, 1) ∈ pres} = L and {w : (w, 0) ∈ pres} = �� \L. Then an algorithm which systematically
searches for the smallest dfa consistent with the information seen so far2 is going to achieve
identification in the limit: at some point all the strings of length up to 2n − 1 (where n is the number
of states in the target dfa) will have appeared and theory tells us that any other dfa consistent with
the data is larger than the target. Therefore, dfa are identifiable in the limit from an informant.

Main Learning Results
Gold [1967] proved that any recursively enumerable class of languages was identifiable in the
limit from an informant. On the other hand, when learning from text (only positive instances are
presented) the situation is drastically different: he proved that any class containing all finite languages
and at least one infinite language was not identifiable in the limit. The proof is not trivial, but the
reader who wishes for himself to try to invent an algorithm should rapidly become convinced of the
impossibility of doing so. This, of course, holds for the regular languages, and most well-known
classes.

2.2.3 AN ACTIVE LEARNING SETTING
In active learning, the learner is not directly presented with information, but has to ask for it. It does
this by querying the oracle. A number of different queries have been introduced since the introduction
of this model by Angluin [1987]: the most important ones are membership queries, in which the learner
suggests a string to the oracle and receives the status of this string as answer, and (strong) equivalence

2. Consistency entails that the (smallest) dfa accepts all the positive examples and rejects all the negative ones. The fact
that this particular problem cannot be solved by any polynomial-time algorithm is irrelevant here, but the algorithm rpni
discussed in Section 3.7 does solve this problem efficiently.
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26 2. FORMAL LEARNING

queries, in which the oracle is presented with a candidate grammar and is to answer “yes” or provide
the learner with a counter-example.

The main difference with the online model is that the learner is now in charge of the learning
session: it decides the next step, including the fact that there is a next step. Therefore, it must decide
at some point to halt. Learning is achieved if it halts with the correct hypothesis (equivalent to the
target).

It should be noted that oracles are both abstract mathematical objects and representative of
practical learning situations: when the learner can interrogate the environment, query a human
expert, or ask the World Wide Web, there may be the chance of using an active learning algorithm.

Main Learning Results
Without further complexity conditions these settings may lead to specific analyses for researchers
in inductive inference, but, probably, computational linguists will not find here what they need.
Indeed, even dfa cannot be learned from positive data and membership queries alone: for a class to
be learnable, the learner must know when to halt, which means that at most one consistent hypothesis
is left in the search space.

2.2.4 INTRODUCING COMPLEXITY
In what precedes we have worried about the capacity of our learning algorithm to converge, some
day. We obviously need something of more practical use. We want to be able to say that learning
takes a reasonable amount of time and energy.

Complexity results usually will depend on the size of an instance of the problem. In the case
of learning, the instance comprises the data which is given to the learner, but also the target itself,
even if the learner never gets to see this target!

What Should We Count?
We first need to know what we are counting. We are in a practical situation where we are given data
and are supposed to build a hypothesis. We are concerned not only with the capacity of building
something, but also of doing as well as possible with the data we are given. Moreover, there may be
a situation where even if we had as much time as we required, we may not have enough data to be
able to build a reasonable hypothesis.

Let us explore briefly some of these ideas.

. The size of what we are learning is obviously an issue: if trying to learn a dfa with three states
over a two-symbol alphabet—not a very interesting task for computational linguistics—we
will certainly need less data than if we are to learn a complex context-free grammar, with
hundreds of rules and over an alphabet made of words from some common language. Note
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2.2 Learnability: Definitions and Paradigms 27

also that since simple (formal) languages can be infinite, the actual cardinality of the language
is not a useful measure for complexity.

. The size of the information we have been given: The more information we have to process,
the longer we will need.3 This may seem simple, but how should we measure the actual size
of a corpus? Is it the number of strings? The number of different strings? Or, the number of
symbols that intervene in those strings, i.e., the sum of the lengths of all strings in the sample?
A survey of these questions can be found in de la Higuera et al. [2008].

How Should We Count?
In order to be able to talk about the time needed to learn, we have to make a difference between the
real learning problem (usually in the batch learning setting—given a sample S, learn a grammar G)
and the online problem used in the analysis: we will suppose that the data arrives to the learner one
item at the time, and that the learner is required to build a new hypothesis from the data it has had
access to so far.

In this theoretical context one can consider counting a number of things.

. The number of errors before learning. In an online setting, the learning algorithm is presented
with a new unlabeled piece of data. Its running hypothesis should be able to classify or label this
input string. The implicit prediction error measure used by Pitt [1989] counts this number. A
good learning algorithm is one that will only make a polynomial number of implicit prediction
errors before converging.

. The number of mind changes is the number of times the learning algorithm has to modify
its hypothesis, before learning. Again, it would seem reasonable that this number varies
polynomially with the size of the target.

. Another way of measuring concerns the size of a sample sufficient for learning to take place.
This characteristic sample may be seen as provided by a teacher . If small it could mean that the
probability that it appears in a random training sample is high. It should be noticed that some
types of grammars admit small characteristic samples, whereas others do not [de la Higuera
1997].

These questions were analyzed by Pitt [1989], de la Higuera [1997, 2010], and Eyraud et al.
[2015]. Summarizing, it can be shown that in most models even deterministic finite automata are
not polynomially learnable. In some cases, this is the “hardest” class one can learn.

3. When learning from data streams, a goal is to limit this factor: the learner is not allowed to memorize all the data. For a
first example of grammatical inference in this setting, see Balle et al. [2014b].
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28 2. FORMAL LEARNING

2.2.5 A PROBABILISTIC VERSION OF IDENTIFICATION IN THE LIMIT
A probabilistic model (or probabilistic language) is a distribution of probabilities over the set of all
strings. When learning a probabilistic model two things change: one still does not have control over
the presentation, but one can measure bad luck, i.e., the fact that some important information has
not yet appeared. On the other hand, what is to be learned has changed, and one is now interested
in learning both a structure and the parameters of this structure.

Horning [1969] proposed to learn probabilistic grammars for natural language processing:
since then, this line has been followed by a number of researchers. Strong arguments in favor have
been proposed by Clark and Lappin [2011].

The notion of identification in the limit can be extended to cope with learning distributions.
In this case, instead of being complete, the presentation of the examples is supposed to follow the
distribution which is to be learned. The probability that the empirical distribution of examples is
indefinitely very different from the theoretical one is 0: we cannot get a skewed distribution forever.

Therefore, a class of probabilistic grammars is identifiable in the limit with probability 1 if
there exists a learning algorithm which, given any grammar in the class is guaranteed to build a
grammar G′ equivalent to G, after having seen a finite number of examples, with probability 1.

Main Learning Results
Identification in the limit with probability 1 has been studied since Angluin [1988a] who first
analyzed the problem and suggested an enumerative algorithm. There are two different issues:
identifying the structure and identifying the probabilities. A number of results related to the first
question can be found in de la Higuera and Oncina [2004] and Stern-Brocot trees are used in order
to identify the probabilities in de la Higuera and Thollard [2000].

2.2.6 PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING
The Probably Approximately Correct (pac) paradigm was introduced by Valiant [1984] and has been
widely used in machine learning.

In order to define pac learning, a number of extra parameters have to be introduced:

. n, a parameter measuring the size of the target under scrutiny (typically the number of states,
for a finite-state machine);

. m, an upper bound on the length of the strings we want to classify;

. ε, the error one is prepared to accept; and

. δ, the confidence with which we want to be within the error.
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2.2 Learnability: Definitions and Paradigms 29

About Distances
In pac learning, the goal is to approximate a target grammar GT by a hypothesis grammar GH . In
order to measure how close GH is to GT a distance is required. There are two cases to consider.

. GT is a (classifying) grammar defining a language, and an independent underlying, but
unknown distribution D exists. This distribution reflects the importance of the data: we expect
that a string w1 whose probability p1 is double of that of another string w2 would therefore be
twice as frequent in a random sample as w2. It should be noted that this does not mean that
w1 has probability p1 of being in a language, just that it has probability p1 of being randomly
drawn.

Then dD(GH , GT ) = PrD(x ∈ L(G) ⊕ L(H)). In words, this is the total mass of prob-
ability of the misclassified strings.

For example, suppose LT = {anbn : n ∈ N} and we use the following distribution over
�� : PrD(u) = 1

22|u|+1 . Now if LH = ∅, we have dD(GH , GT ) = PrD(LT ) = ∑
i∈N

1
24i+1 =

1
2

∑
i∈N

( 1
16)

i = 8
15 .

If LH = {anbn : n > 0}, dD(GH , GT ) = PrD(λ) = 1
2 .

. GT is a probabilistic grammar. In this case the examples are drawn following the distribution
defined by the grammar itself. PrGT

and PrGH
denote the probability functions using the

target grammar and (respectively) the hypothesis grammar. A number of alternative distances
have been proposed:

d∞(GT , GH) = maxx∈�� | PrGT
(x) − PrGH

(x)|
dk(GT , GH) =

(∑
x∈��(| PrGT

(x) − PrGH
(x)|k)

) 1
k

kl(GT , GH) = ∑
x∈�� PrGT

(x) log(PrGT
(x)/ PrGH

(x)).

The Kullback and Leibler [1951] (kl) divergence is not a distance but it measures the cross-entropy
between the target grammar and the hypothesis.

Definition 2.1 Let GT be the target grammar and GH a hypothesis grammar. Let ε > 0. We say
that GH is an ε-good hypothesis w.r.t. G for distance d ifdef d(GT , GH) < ε.

A learning algorithm is now asked to build a grammar given a confidence parameter δ and an
error parameter ε. The algorithm is also given an upper bound n on the size of the target grammar
and (sometimes) an upper bound m on the length of the examples it is going to get. The algorithm
can query an oracle for an example randomly drawn according to the distribution D. The query of an
example or a counter-example will be denoted Ex(). When the oracle is only queried for a positive
example, we will write Pos-Ex(). And when the oracle is only queried for strings of length ≤ m, we
will write Ex(m) and Pos-Ex(m), respectively. Formally, the oracle will then return a string drawn
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from D, or D(L(G)), or D(�≤m), or D(L(G) ∩ �≤m), respectively, where D(L) is the restriction of
D to the strings of L: PrD(L)(x) = PrD(x)/ PrD(L) if x ∈ L, 0 otherwise. PrD(L)(x) is not defined
if L = ∅.

Definition 2.2 (Polynomial pac-learnability for discriminant grammars) Let G be a class of
grammars. G is pac-learnable ifdef there exists an algorithm A s.t. ∀ε , δ > 0, for any distribution
D over ��, ∀n ∈ N, ∀G ∈ G of size ≤ n, for any upper bound m ∈ N on the size of the examples, if
A has access to Ex(), ε, δ, n, and m, then with probability larger than 1 − δ, A returns an ε-good
hypothesis w.r.t. G. If A runs in time polynomial in 1

ε
, 1

δ
, n, and m, we say that G is polynomially

pac-learnable.

In the case where the goal is to learn probabilistic grammars, the restriction on the length of
the strings is meaningless and the definition is adapted as follows.

Definition 2.3 (Polynomial pac-learnability for probabilistic grammars) Let G be a class of
probabilistic grammars. G is pac-learnable ifdef there exists an algorithm A s.t. ∀ε , δ > 0, ∀n ∈ N,
∀G ∈ G of size ≤ n, if A has access to Ex(), ε, δ, n then with probability larger than 1 − δ, A
returns an ε-good hypothesis w.r.t. G (and the intended distance). If A runs in time polynomial in
1
ε
, 1

δ
, and n, we say that G is polynomially pac-learnable.

Main Learning Results
The pac-learnability of grammars from strings of unbounded size has always posed technical
difficulties. Most results are negative [Kearns and Valiant 1989, Warmuth 1989, Kearns and Vazirani
1994].

When learning probabilistic automata, pac-learning is the dominant setting. One of the
reasons for this is that the identification in the limit with probability one has not allowed any
satisfying definition regarding complexity issues [de la Higuera and Oncina 2004]. For different types
of distances, pac-learning algorithms have been proposed for deterministic probabilistic automata
from text [Clark and Thollard 2004, Palmer and Goldberg 2005, Castro and Gavaldà 2008], with
queries [Balle et al. 2010], and from data streams [Balle et al. 2014b].

A related independent question is that of computing the distances between distributions, i.e.,
between the probabilistic grammars or automata which define these. Interestingly, for pfa some
distances are tractable while others are not, whereas for probabilistic context-free grammars, no
distance can be computed [Lyngsø and Pedersen 2002, Nederhof and Satta 2004, de la Higuera
et al. 2014].
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2.3 GRAMMAR FORMALISMS
In many grammatical inference situations, the class of grammars is imposed. But there are also several
situations where a careful analysis of the data and the goals of the task may allow one to choose the
hypothesis class. The choice of the class is obviously crucial to success in learning: a discriminant
model may be better than a probabilistic one; a simpler model (which will represent poorer structures)
might do the job as well as a more complex one and, furthermore, be easier to learn.

In this section we present some of the most important classes of grammars and automata. In
order to help the reader to choose the right type of grammars, we will, in each case, measure the
capacity of a grammar (or automaton from that class) to do each of the following:

To parse: How easy is it, given an input string, to obtain the expected output?

To model: What grammatical structures can, or cannot, be modeled by using a grammar from
this class?

To learn: Do we have learning algorithms (or, on the other hand, theoretical negative results)?

Complete formal definitions can be found in a number of textbooks; we choose here to present the
models informally and rely principally on examples.

2.3.1 FINITE-STATE MACHINES RECOGNIZING STRINGS
Finite-state automata are used to decide if a string belongs to a language or not. A finite-state
automaton is built using states and transitions between states. These transitions are labeled by
symbols from the chosen (input) alphabet. A particular state is chosen as initial state (but there
can be more than one if the automaton is non-deterministic); certain states are marked as final or
accepting states. An automaton recognizes a string if there is a path of transitions leading from an
initial state to a final state which reads this string. The language recognized by the automaton is
exactly the set of strings recognized by it. We build upon the definitions from Section 1.6.

Deterministic Finite-State Automata
The language LA recognized by the automaton A is the set of all strings x for which there exists a
path leading from the initial state to a final state which reads string x. In the example represented
in Figure 2.1, a is in LA, whereas ab is not. This machine is deterministic in the following sense:
(1) there is just one initial state and (2) in every state, when having to read any symbol, there is at
most one admissible transition.

Parsing with a dfa is straightforward and can be done in time linear in the length of the string
to be parsed.

dfa admit a minimum canonical form, unique up to the names of the states. This has
important consequences: equivalence can be tested in polynomial time.

Table 2.1 summarizes the parsing, modeling, and learning criteria for dfa.
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q2q0

q2

q1b b

b a

aa

a b

FIGURE 2.1: Graphical representation of a dfa.

TABLE 2.1: Deterministic finite-state automata: dfa

Criterion Comment

Parsing Parsing a string of length m can be done easily in time linear in m.
Modeling A dfa can be used to recognize any regular language.
Learning There are algorithms to learn dfa from an informant (from both examples and

counter-examples). But to learn from positive examples only, extra bias is
needed: the class of dfa (and therefore of languages) has to be reduced. Study
of dfa learning has been very extensive with algorithms, in the active setting
[Angluin 1988b], or from an informant [Oncina and Garcı́a 1992]. In order
to obtain positive learning results one can consider subclasses of the regular
languages, leading to constrained types of deterministic finite automata: k-
reversible languages admit automata which, when reversed, use a look-ahead
of size k to parse [Angluin 1982], and k-testable languages are defined by legal
and illegal substrings of length k [Garcı́a and Vidal 1990].

Non-Deterministic Finite-State Automata
In a non-deterministic finite-state automaton (nfa), more freedom is allowed, since there may be
different initial states and, from any particular state and any symbol, there may be several states
reachable when reading a string. In the case of the nfa represented in Figure 2.2, this means that
there are various parses for a particular string. For instance, string aa has three parses, two of which
reach a final accepting state.

nfa can even have λ-transitions: these allow to move freely from one state to another. This
is represented in Figure 2.3: with λ-transitions parsing becomes even more complex. But these
λ-transitions can be removed with a polynomial-time algorithm.
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q2q0

q3

q1b

b a

a

a

a

a

a

FIGURE 2.2: An nfa.

q2q0

q3

q1b

b a

a

λ

λ

a

a

a

FIGURE 2.3: An nfa with λ-transitions. Some strings admit an infinity of parses.

nfa also suffer from some algorithmic inconveniences.

. Checking if two nfa are equivalent is P-space complete. A and B are equivalent ifdef they
recognize the same language, i.e., if LA = LB.

. Minimizing an nfa is an N P-hard problem. This is linked with the fact that there is no
simple tractable normal or canonical form for nfa.4

Table 2.2 summarizes the parsing, modeling, and learning criteria for nfa.

Regular Expressions
These are used to describe languages in a linear (non-graphic) way using the symbols of the alphabet
� and + (indicating the union) and ∗ (for the iteration). The formal definitions are found in
Definition 1.8.

4. In complexity theory, an N P-hard problem is the hardest in the class of problems solvable in polynomial time by a non-
deterministic Turing machine. More practically, the hypothesis P �= N P is generally believed to be true; as a consequence,
an N P-hard problem does not admit a tractable algorithm.

wjj
高亮

wjj
高亮



34 2. FORMAL LEARNING

TABLE 2.2: Non-deterministic finite-state automata: nfa

Criterion Comment

Parsing Parsing a string of length m with an nfa of n states can be done in time in O(mn).
Modeling A nfa can be used to recognize any regular language. But in certain cases

the smallest dfa equivalent with a given nfa can be exponentially larger.
Furthermore, there is no natural notion of canonical form, which also
corresponds to the fact that there is no straightforward semantics.

Learning There are few positive results concerning learning nfa. When algorithms exist,
they will learn nfa corresponding to a subclass of the regular languages or
have a complexity function of that of the corresponding smallest dfa.

TABLE 2.3: Regular expressions

Criterion Comment

Parsing Parsing a string with a regular expression typically requires transforming the
regular expression into an nfa. The transformation can be expensive.

Modeling Regular expressions model again the regular languages, like the dfa. But they
can appear as natural modeling tools, for example in web applications, where
xpath expressions are tree-like extensions of regular expressions.

Learning There are few positive results concerning learning regular expressions. One
exception is by Fernau [2005], who attempts to learn these directly. In
text extraction applications, heuristics allowing to find representing regular
expressions have been proposed.

Example 2.2 aba∗b(a + b)∗ is a regular expression. abb, ababaa are strings belonging to the
language denoted by this regular expression. On the other hand, abaaa is not in the language.

Table 2.3 summarizes the parsing, modeling, and learning criteria for regular expressions.

2.3.2 PROBABILISTIC FINITE-STATE MACHINES
In the previous formalisms, parsing corresponds to answering the following question: Does this
(candidate) string belong or not to the language? All strings in the language have equal importance.
An alternative is to weigh the strings depending on their importance, which leads to the introduction
of weighted automata. A variant of these where all weights are positive and the sum of total weights
equals 1 leads to probabilistic languages. These can be recognized or generated, for example, by
automata, hidden Markov models, or probabilistic context-free grammars.
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Probabilistic Finite-State Automata
Probabilistic finite automata (pfa) are generative devices: they are built from a dfa or nfa structure,
upon which three functions are added:

. IP : Q → R
+ ∩ [0, 1] (initial probabilities);

. FP : Q → R
+ ∩ [0, 1] (final probabilities); and

. δP : Q × (� ∪ {λ}) × Q → R
+ is a transition function; the function is complete: IP, δP, and

FP are functions such that
∑
q∈Q

IP(q) = 1, (2.1)

and ∀q ∈ Q,

FP(q) +
∑

a∈�∪{λ},q ′∈Q

δP(q , a , q ′) = 1. (2.2)

The above definition is inspired by Vidal et al. [2005] and de la Higuera [2010]. A historical
landmark is Paz [1971]. Let x ∈ ��, �A(x) be the set of all paths accepting x: a path is a
sequence π = qi0

x1qi1
x2 . . . xnqin

where x = x1 . . . xn, xi ∈ � ∪ {λ}, and ∀j ≤ n, ∃pj �= 0 such that
δP(qij−1

, xj , qij
) = pj . The probability of the path π is

IP(qi0
) .

∏
j∈[n]

pj
. FP(qin

).

And the probability of the string x is obtained by summing over all the paths in �A(x). Note
that this may result in an infinite sum because of λ-transitions (and more problematically λ-cycles).
An effective computation can be done by means of the forward (or backward) algorithm [Vidal
et al. 2005].

A pfa is represented in Figure 2.4; note that in some nodes, two probabilities are given—the
one that the state is initial, and the one of halting in that state. The probability of a given string is
taken by summing over the different accepting paths. On each path, the weights are multiplied. In
Figure 2.5 there are λ-transitions. Since furthermore there is a cycle of λ-transitions this means that
parsing is complex. It should be noted that even if pfa cannot be determinized in the way nfa can,
there are algorithms to eliminate the λ-transitions.

Table 2.4 summarizes the parsing, modeling, and learning criteria for pfa.

Hidden Markov Models
Hidden Markov models (hmms) [Rabiner 1989, Jelinek 1998] are finite-state machines defined by
(1) a finite set of states, (2) a probabilistic transition function, (3) a distribution over initial states,
and (4) an output function.
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q3 : 0.3

q2 : 0.4

0.6 : q1 : 0.1 b 0.2

a 0.5

b 0.4

b 0.4

a 0.5

a 0.2

a 0.5

0.4 : q0

b 0.5

FIGURE 2.4: A pfa.

q3 : 0.3

q2 : 0.4

0.6 : q1 : 0.1 b 0.2

λ 0.5

λ 0.4

b 0.4

λ 0.5

a 0.2

λ 0.5

0.4 : q0

b 0.5

FIGURE 2.5: A pfa with λ-transitions.

An hmm generates a string by visiting (in a hidden way) states and outputting values when
in those states. An hmm is represented in Figure 2.6:

. a state denoted 0.6 : q2 : (a, 0.5)(b, 0.5) has probability 0.6 of being chosen as initial, and
when reached will generate a and b with probability 0.5; and

. the weight labeling a transition initiating in state q indicates the probability of following this
transition, when in state q.

Typical problems include finding the most probable path corresponding to a particular output
(usually solved by the viterbi algorithm).

Note that in order to obtain a distribution over �� and not each �m, one solution is to
introduce a unique final state in which, once reached, the machine halts. An alternative often used is
to introduce a special symbol (�) and to only consider the strings terminating with �: the distribution
is then defined over �� �. The hmm from Figure 2.6 is transformed into the one represented in
Figure 2.7.

Equivalence results between hmms and pfa can be found in Vidal et al. [2005].
Table 2.5 summarizes the parsing, modeling, and learning criteria for hmms.
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TABLE 2.4: Probabilistic finite-state automata: pfa

Criterion Comment

Parsing Parsing a string of length m with a pfa of n states can be done in time in O(mn2)

using the forward algorithm.
Modeling The deterministic restriction (dpfa) corresponds to a less powerful class: some

distributions can be represented by pfa, but not by dpfa.
Learning There are few theoretical positive results concerning learning pfa. The typical

algorithm is em (called baum-welch [Baum et al. 1970, Hulden 2012] in
this setting): it starts with a particular structure and an initial setting of the
parameters, then, iteratively, parses the strings from a sample and counts how
the transitions are used, then updates the weights accordingly. For the special
class of dpfa, there have been a number of algorithms, built on the state-
merging techniques [Carrasco and Oncina 1994, Ron et al. 1995, Thollard
et al. 2000, Clark and Thollard 2004]. The pautomac competition, which
took place in 2012, was won by Shibata and Yoshinaka [2014]. Bayesian
model-merging [Stolcke 1994] and spectral methods [Bailly 2011] are some
other methods used for this task. A complete presentation of the pautomac
findings can be found in Verwer et al. [2014].

q4 : (a, 1)

q3 : (a, 0.1)(b, 0.9)0.4 : q0 : (a, 0.4)(b, 0.6)

0.6 : q1 : (a, 0.5)(b, 0.5) 0.2

0.6

0.8

0.4

0.5

0.3

0.7

0.5

FIGURE 2.6: An hmm.

2.3.3 TRANSDUCERS
Transducers take strings as inputs, but also as outputs; they allow one to recognize bi-languages, and
can also include weights.

Finite-State Transducers
Transducers are used for a number of tasks, including morphology [Roark and Sproat 2007] and
automatic translation [Amengual et al. 2001]. A transducer is a finite-state machine in which there is
not only an input but also an output string. Typically, outputs can be emitted both at the transitions
and the final states.
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q4 : (a, 1)

q3 : (a, 0.1)(b, 0.5)(#, 0.4)0.4 : q0 : (a, 0.4)(b, 0.3)(#, 0.3)

0.6 : q1 : (a, 0.5)(b, 0.5) 0.2

0.6

0.8

0.4

0.5

0.3

0.7

0.5

FIGURE 2.7: An hmm using � to terminate the generation of strings. It defines a distribution over �� �, and
therefore can be used also over ��.

TABLE 2.5: Hidden Markov models: hmm

Criterion Comment

Parsing Parsing a string of length m with an hmm of n states can be done in time in
O(mn2).

Modeling An hmm does not have final states: it therefore defines a distribution over each
�n. Through careful encoding, they can define the same distributions as those
modeled by pfa.

Learning There are few theoretical results concerning learning hmm as the main algorithm
is an expectation-maximization method [baum-welch; Baum et al. 1970]
whose convergence is problematic. Other learning methods include spectral
methods [Hsu et al. 2012] and Gibbs sampling [Gelfand and Smith 1990].

q0

le :: the
ballon :: λ

rouge :: red ball

jaune :: yellow ball
balle :: λ

balle :: λ
la :: the

FIGURE 2.8: A rational transducer.

In Figure 2.8, we have represented a rational transducer, with outputs only on the transitions:
we can use this transducer to find that the correct translation of input string “la balle rouge” is “the
red ball.”

Subsequential transducers are deterministic with respect to their input: this means that every
input can only be translated into at most one output. Oncina et al. [1993] show that they are learnable
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q0 q1 q2

a :: 1

a :: 1  0
a :: 10

11

b :: λ

# :: 
  0
00

# :: 
00
01

b :: 
  0
11

FIGURE 2.9: A semideterministic transducer.

when they describe total functions: every input string has exactly one translation. Vilar [1996] shows
that they are learnable in an active setting by translation queries.

Extensions of this very constrained model exist: Allauzen and Mohri [2002] introduced
p-subsequential transducers: these have multiple outputs at the states. Furthermore, machines
for which inputs are deterministic but the outputs are not are called semideterministic finite-state
transducers [Beros and de la Higuera 2014]. One such transducer is represented in Figure 2.9: given
an input, there is at most one parse path, but there can be many different outputs.

On the other hand, general transducers can exist (with or without probabilities). They can be
normalized in such a way that all transitions have labels of one of the following forms:

. input is a symbol, output is the empty string; and

. input is the empty string, output is a symbol.

In Figure 2.10 we have represented such a transducer. It can be seen that finding the possible
output strings for a given input string is already a difficult question.

Table 2.6 summarizes the parsing, modeling, and learning criteria for transducers.

Probabilistic Finite-State Transducers
Weighted and probabilistic transducers are becoming increasingly popular. Weighted transducers
have outputs that are weights and strings [Mohri 1997, Mohri et al. 2000].

Probabilistic finite-state transducers (pfst) are similar to pfa, but in this case two different
alphabets (source � and target �) are involved. Each transition in a pfst has attached a symbol
from the source alphabet (or λ) and a string (possible empty string) of symbols from the target
alphabet. pfsts can be viewed as graphs, as in Figure 2.11:

. a transition labeled b :: 00, 0.2 will be followed with probability 0.2 and result in translating
the input symbol b into the string 00; and

. when reaching state q2 there is probability 0.3 of halting.
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q1

q2

q7

q11

q13 q14

q10 q12

q6

q4

q15 q16

q8

q5

q9

q3

λ :: 4

λ :: 4

λ :: 2

λ :: 1 λ :: 1
λ :: 1

λ :: 1

λ :: 3

λ :: 3

λ :: 3
a :: λ

a :: λ
a :: λa :: λ

a :: λ

λ :: 2 λ :: 2

λ :: 4

λ :: 4

# :: λ

# :: λ# :: λ

FIGURE 2.10: Normalized transducer.

TABLE 2.6: Transducers

Criterion Comment

Parsing In the context of transducers, parsing can lead to several different questions. If
the question is that of checking whether y is a correct translation for x, this
can be solved for general (non-deterministic) transducers in polynomial time.
The question of discovering all the translations for a given input is ill-posed as
the set can be infinite, even if it is a regular language; see Figure 2.10.

Modeling Subsequential transducers only accept one translation for every input string,
which is clearly a limitation. Extensions in which several possible outputs are
allowed are the p-subsequential and semideterministic models.

Learning Subsequential transducers can be learned from a sample [Oncina et al. 1993] or
translation queries [Vilar 1996].

The transducer defines a distribution over bi-languages. One can note that the pair (ab, 110) will
be generated with probability 0.0036 = 0.3 . 0.3 . 0.2 . 0.2. More complex is the case of the pair
(aa, 111), which can be generated in two different ways. The probability of generating this pair is
then 0.0135 = 0.3 . 0.3 . 0.3 . 0.3 + 0.3 . 0.3 . 0.5 . 0.4 . 0.3.

More formally, let x ∈ �� and y ∈ ��. Let �T (x , y) be the set of all paths accepting (x , y): a
path is a sequence π = qi0

(x1, y1)qi1
(x2, y2) . . . (xn, yn)qin

where x = x1 . . . xn and y = y1 . . . yn,
with ∀j ∈ [n], xj ∈ � ∪ {λ} and yj ∈ ��, and ∀j ∈ [n], ∃pij

such that (qij−1
, xj , yj , qij

, pij
) ∈ E.

The probability of the path is
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q1 : 0.2 q2 : 0.3 q3 : 0

a :: 1, 0.3

b :: 00, 0.2

λ :: 1, 0.3

b :: 0, 0.2

λ :: 1, 0.5

a :: λ, 0.4

λ :: 0, 0.6

FIGURE 2.11: A probabilistic transducer.

q1 q2 q3

a :: 1, 0.2

a :: 1, 0.4

b :: 00,   0.3

# :: 
λ,   0.2
1,   0.4

# :: 
  0,   0.1
01,   0.2

a :: 
0,   0.3
 1,   0.4

b :: 
  0,  0.3
11,  0.2

FIGURE 2.12: A probabilistic semideterministic transducer.

IP(qi0
) .

∏
j∈[n]

pij
. FP(qin

).

And the probability of the translation pair (x , y) is obtained by summing over all the paths in
�T (x , y). The probability of y given x (the probability of y as a translation of x, denoted as
PrT (y|x)) is PrT (x ,y)∑

z∈�� PrT (x ,z)
.

The problem of finding the optimal translation is called optimal decoding: it is N P-hard
[Casacuberta and de la Higuera 2000]. Recent work provides techniques allowing to compute this
string in many cases [de la Higuera and Oncina 2013]. Semideterministic transducers can also be
adapted in order to include probabilities and define distributions over bi-languages, as in Figure 2.12.

Table 2.7 summarizes the parsing, modeling, and learning criteria for probabilistic transducers.

2.3.4 MORE COMPLEX FORMALISMS
Finite-state machines can only model certain languages. The different models we have surveyed can
be rendered more complex in a number of ways.
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TABLE 2.7: Probabilistic transducers

Criterion Comment

Parsing There are several parsing problems related to probabilistic transducers:

. Computing Pr(x , y) can be done by adapting the forward algorithm.

. The stochastic translation problem of a source sentence is: given input string x, find
a target string y that maximizes Pr(y | x) or Pr(x , y). In other words, we are
looking for the most probable translation. This is actually a complex intractable
problem [Casacuberta and de la Higuera 2000] for which a number of heuristics
exist, and an efficient parameterized algorithm has been designed [de la Higuera
and Oncina 2014].

Modeling The expressiveness of probabilistic transducers depends on the amount of
determinism allowed. There are some rich extensions allowing to define
distributions: negative and even complex weights have been proposed.

Learning There are few positive formal results concerning learning pst. In the identification
in the limit line, Akram et al. [2012] learn the deterministic ones in an active
setting and Akram and de la Higuera [2012] in a batch setting. In a pac
learning setting, recent results have been obtained by Balle et al. [2014a].

. General context-free grammars correspond to the second step of the Chomsky Hierarchy.
They model languages which can also be recognized by push-down automata.

. Probabilistic context-free grammars are the probabilistic version of the above.

. Bi-grammars are context-free extensions of the transducers: the bi-languages are built by using
context-free like rewriting rules.

. Whereas all these models deal with strings, there is in many cases a natural albeit technical
extension to trees: tree automata, tree grammars, tree transducers, etc. In certain cases, graph
languages can also be defined.

Context-Free Grammars
A context-free grammar is used to generate strings. It can be used for parsing by algorithms running
in O(m3) time, where m is the length of the string. The two better known algorithms for doing this
are the Earley [1970] and the cyk [Younger 1967] algorithms.

It is often a sound policy to normalize the context-free grammars: when in Chomsky (or
quadratic) normal form, the right hand of rules is of length at most 2; when in Greibach normal
form, the right hands start with a terminal symbol. Grammatical inference specialists should be
aware that when learning a normal form, the actual structure of the strings changes. If what matters
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the ball

Det N

NP

hit

John V

VPNP

S

FIGURE 2.13: Parse tree for John hit the ball.

is only the language, this is not an issue. But if one is also interested in why a string belongs to
the language, then one will need the derivation or parse tree which is grammar dependent and not
language dependent.

One curious grammatical inference example illustrates this point: Sakakibara [1990] proves
that reversible grammars are learnable from skeletons; skeletons are parse trees with no labels on the
internal nodes of the tree. Furthermore, he shows that any context-free language admits a reversible
normal form (even if the construction can be exponential). It would therefore seem natural to claim
that context-free languages are learnable from skeletons. If so, this would represent great news as
skeletons can easily be built from treebanks by just removing the labels of the internal nodes! The
answer is nevertheless negative, as the sort of skeletons we would need to be able to use Sakakibara’s
result are not those that appear naturally when analyzing natural language. So the language inferred
by this technique would be very far away from the natural language we would expect.

Example 2.3 The following grammar generates well-structured bracketed languages: 〈{N1}, {a, b},
N1, R〉 with R = {N1 → aN1bN1; N1 → λ}.

A typical parse tree for a context-free grammar that may be used for English is represented
in Figure 2.13.

Linear grammars are context-free grammars in which right-hand sides of rules contain at
most one non-terminal. The good news is that parsing strings using linear grammars is in O(n2)

time. The bad news is that there is no real advantage, as far as learnability is concerned, in using
linear grammars: as discussed in Section 2.1.1, the equivalence problem remains undecidable, which
is a barrier for learning. Nevertheless, there are some cases where learning is possible: even linear
grammars [Takada 1988] and deterministic linear grammars [de la Higuera and Oncina 2002] have
been shown to be learnable.
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a

S

S

a S

b

a

c

cc

S

FIGURE 2.14: Parse tree for the sentence aabaccc for a linear grammar with rules S → aS|bS|aSc|acc.

Example 2.4 In Figure 2.14 is an example of a linear grammar and of a tree.

Even linear grammars are those linear grammars where, on the right-hand side of the rules,
the unique non-terminal symbol, if present, has, to its left and to its right, an identical number of
terminal symbols. If such grammars are used, it is easy to find the center of a string and therefore to
produce a skeleton. Therefore, learning such grammars is as difficult as learning finite-state machines.

Example 2.5 〈{N1}, {a, b}, N1, R〉 with R = {N1 → aN1a|bN1b|a|b|λ} is a linear grammar which
generates palindromes. Furthermore, this grammar is even linear. Figure 2.15 shows a parse tree for
this grammar.

Deterministic linear grammars were shown to be learnable by de la Higuera and Oncina
[2002]. A probabilistic version is studied by de la Higuera and Oncina [2003]. In such grammars
there is exactly one terminal symbol before the non-terminal in the right-hand side of the rules and
there is a deterministic rule to be followed.

Example 2.6 The following is a deterministic linear grammar:

〈{N1, N2}, {a, b}, N1, R〉 with R = {N1 → aN1ab|bN2; N2 → aN1a|b}.

Table 2.8 summarizes the parsing, modeling, and learning criteria for cfgs.

Probabilistic Context-Free Grammars
Definition 2.4 A probabilistic context-free grammar (pcfg) G is a quintuple 〈V , � , N , R , P 〉 where
V is a finite alphabet (of variables or non-terminals), � is a finite alphabet (of terminal symbols), N

(∈ V ) is the start symbol, R ⊂ V × (V ∪ �)∗ is a finite set of production rules, and P : R → R
+ is

the probability function. Furthermore, (1) ∀r ∈ R , 0 < P(r) ≤ 1 and (2) ∀A ∈ N ,
∑

(A, α) ∈ R :
P(A, α) = 1.
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a

N1

N1

b N1

a

b

b

N1

a

a

FIGURE 2.15: Parse tree for an even linear grammar.

TABLE 2.8: Context-free grammars

Criterion Comment

Parsing cyk and the Early algorithm are two parsing algorithms, both with cubic
complexity.

Modeling Context-free grammars allow for the representing of patterns which are not
regular: palindromes and brackets, for instance.

Learning Sakakibara [1990] has proposed different learning results from bracketed data. In
unsupervised learning, there are no efficient algorithms, one exception being
an active learning result [Clark 2010a]. But a number of alternative approaches
have been studied. Some of these are presented in Chapter 4.

A pcfg is used to generate strings by rewriting iteratively the non-terminals in the string,
beginning with the start symbol. A string may be obtained by different derivations. In this case the
problem is called ambiguity. Parsing with a pcfg is usually done by transforming the pcfg into one
equivalent in quadratic normal form and adapting the Earley or the cyk algorithms.

Table 2.9 summarizes the parsing, modeling, and learning criteria for pcfgs.

Bigrammars
Translation tasks requiring rules that cannot be described through finite-state machines mechanisms
can make use of a formalism associating context-free grammars and transducers. A synchronous
grammar (or synchronous phrase structure grammar) is made of a set of rules of the form T →
input ; outputwhere T is a non-terminal, input is a string over non-terminals and labeled terminal

wjj
高亮



46 2. FORMAL LEARNING

TABLE 2.9: Probabilistic context-free grammars

Criterion Comment

Parsing cyk and the Early algorithm are two parsing algorithms which can be adapted to
work with probabilistic context-free grammars. A very efficient extension of
the Early algorithm due to Stolcke [1995], which can compute:

. the probability of a given string x generated by a pcfg G;

. the single most probable parse for x;

. the probability that x occurs as a prefix of some string generated by G.

Modeling Context-free grammars allow us to represent patterns which are not regular:
palindromes and brackets, for instance.

Learning There are two issues when contemplating learning pcfgs. Unsupervised learning
is the task consisting of learning these from just strings. Alternatives are to
start with very general grammars and attempt to estimate the parameters.
This can be done with the inside-outside algorithm [Lari and Young 1990].
Bayesian methods will rely on priors: a knowledge of some characteristics
concerning the distribution which will help the algorithm to converge.
Algorithm comino produces interesting results [Scicluna and de la Higuera
2014b]. The supervised task is simpler, as it consists of learning from the
treebank.

symbols from the input alphabet, and output is a string over non-terminals and labeled terminal
symbols from the output alphabet.

A typical rule might be

NP → el libro grande ; the big book

NP → el NOUN 1 ADJ 2 ; the ADJ 2 NOUN 1.

Notice that only a one-to-one mapping is allowed. Parsing with such machines can be complex. A
natural extension consist in adding probabilities to the rules [Koehn 2010].

2.3.5 DEALING WITH TREES AND GRAPHS
Strings and sequences represent the first level of structured information. In a number of applications
much more information (and of a much richer nature) can be represented through trees or even
graphs. The learning problems will obviously be harder, but the benefits will be higher.

The theories of tree automata and graph grammars are out of the scope of this book. However,
here we name just a few:
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a

•

•

a •

a

b

b

• a

•

a • b

a

FIGURE 2.16: Skeleton corresponding to the bracketed string (a(a(a(b)a)b)(a(a)b)).

. If one chooses only to bracket a sentence, the result may be represented as a skeleton. A
skeleton is a tree in which the internal nodes are unlabeled. See Example 2.7 for the simple
idea.

. Trees will usually be ordered, and the internal nodes of a tree will be marked by valuable
labels. This is the case of the trees one can find produced by a parser for natural language.
Tree grammars and automata have been thoroughly studied in the past [Comon et al. 1997].

. Graphs can be directed or not. Graphs will possibly represent complex dependencies between
the constituents of a sentence. Graph grammars have been studied in detail [Courcelle and
Engelfriet 2012]. When asked to be learnable, the grammars have to be simplified [Oates
et al. 2002, 2003].

Example 2.7 An example of a skeleton is depicted in Figure 2.16.

2.4 IS GRAMMATICAL INFERENCE AN INSTANCE OF
MACHINE LEARNING?

As grammatical inference deals with learning automata and grammars, the reader familiar with
machine learning will be interested in relating some key machine learning concepts with grammatical
inference. Interestingly, both natural language processing and machine learning were discussed by
Turing [1950] in his work about machine intelligence: he worked on both and partially reported some
of his findings.

Nowadays, machine learning is a well-established field of research, with its journals, con-
ferences, companies, and teams. It also has a theory of its own which is studied in universities
throughout the world. This theory is based on some profound statistically inspired work by Vapnik
and Chervonenkis [1971] and some more combinatorially inspired work by Valiant [1984].
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Vapnik’s approach is to characterize the learning problem as one of studying convergence
issues regarding the empirical risk. The empirical risk measures the errors made when finding a
hypothesis explaining the examples. There are then two sources of errors: a first one concerns the
fact that the optimization process may not return the real optimum, and the second concerns the
fact that the set of hypotheses may not be able to capture exactly what has to be learned. Vapnik
studies how the generalization risk (measuring the errors to be made on unseen data) will converge
to the empirical risk.

In Valiant’s framework (see Section 2.2.6), we suppose that what is to be learned does belong
to the hypothesis space. We will then ask if it is possible to explore efficiently this space and return
a consistent hypothesis in this space.

Since grammatical inference is seen by many as a particular form of machine learning, one
may believe that it is sufficient to adapt the above well-studied theories to the setting of grammatical
inference. In general, this approach does not work well; here are some simple reasons for this.

. In classical machine learning, a good measure of the hypotheses class is the V C-dimension
(Vapnik–Chervonenkis). The V C-dimension of the class expresses how easy it is to find
a hypothesis that will match a given set of examples and counter-examples. A small V C-
dimension will usually mean that the class of hypotheses is poor, which in turn means that a
good hypothesis inside the class is going to be hard to better. A high V C-dimension means
that the class is rich and that finding a consistent hypothesis is always possible: this encourages
overfitting and will usually result in hardness results, because of the high variance.

Mathematically, the V C-dimension is the size of the largest set which can be shattered by
the hypothesis class; a set X = {x1, x2, . . . , xn} is shattered by a class H if given any partition
of X into X1 and X2 there is a hypothesis h in H which classifies all elements of X1 as 1, and
all those of X2 as 0.

But the V C-dimension for typical classes of automata or grammars is infinite. This is
easy to see: if we are given any finite language, in most formalisms it is possible to build
an infinity of automata or grammars which recognize/generate exactly the strings from the
finite language. A usual way around this is to restrict the class by indexing it by the size of the
grammars it contains. The new question is then: What is the V C-dimension for the automata
with at most n states, or for the grammars with at most n rules? Here again, the results are
disappointing, with V C-dimensions of O(n log n) for dfa and O(n2) for nfa: such results
are inconclusive and do not allow one to derive the sort of bounds for which one would hope.

. Traditional computational learning tools will prove that finding consistent dfa is a hard
problem, as hard as a number of cryptographic problems [Kearns and Vazirani 1994]. This
in turn results in not allowing for positive pac learning results.
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2.5 SUMMARY
To conclude this chapter, let us ask ourselves how theoretical results can help.

The first thing to understand is that a first decision people attempting to build a learning
system have to make is what sort of grammar they are thinking of learning. This is going to constitute
the learning bias. Indeed, the learner is not just trying to learn from data: it has to decide what biased
solution it is looking for. More generally, the bias-variance trade-off issue (or the related one of no
free lunch) is very present in grammatical inference and is an issue to be taken seriously!

This may seem frustrating. After all, why not let the learning system find an unbiased
grammar? There are many works in learning theory showing that this naive approach is doomed.
It is always possible to find a very complex grammar consistent with the data, provided this data is
non-contradictory.

And the choice of grammars will depend on our understanding of what we are looking for, of
the sort of essential rules governing the structure of sentences or words. But also on our understanding
of how grammars model languages, of how easy they are to learn.

The second question we will want to raise is that of the learning paradigm. In the real learning
situation we are to face, the way we receive the data, the way it is generated, and the properties of this
matter will all be elements important to analyze. The theoretical tools from grammatical inference
allow us to do that.

Obviously, the fact that our learning algorithm has nice positive convergence properties will
not ensure that learning will be possible when facing a specific learning situation. But curiously, there
still is an advantage of having some theorem telling us that the algorithms the learner is using can
learn or identify some unknown targets, although not all. Consider the significance of the assessment
“this class is not learnable.” If a class is not learnable, this means that somewhere in the class there
are some targets which are not learnable. It means that if what we were hoping to learn was one of
those targets, then we should forget it or rely on luck. Going further, this signifies that if we divide
the class of grammars under scrutiny into the subclass of the ones the algorithm can learn and the
subclass of those the algorithm cannot learn, there is in fact a hidden bias: the real class our algorithm
is learning is probably quite different from the class we intend to learn from.

In other words, we say that we are using bias A but are really using bias B. The worse part is
that usually we cannot know what B is!
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C H A P T E R 3

Learning Regular Languages

3.1 INTRODUCTION
This chapter primarily examines how regular patterns can be learned from positive data. It also
emphasizes an approach to learning by selecting the bias carefully. This is because many of the
important, practical grammatical inference techniques were developed in this way. It is also because
many of the insights obtained here can be, have been, and continue to be fruitfully applied to non-
regular classes. And so there is every reason to believe that the lessons here are valuable in ongoing
research on language learning.

The first section of this chapter explains why appropriately selected bias is a valuable way to
attend to learning problems in computational linguistics. As explained there, it is not the only way,
and others have and continue to be pursued.

The main learning technique discussed in this chapter is state-merging. State-merging will
be introduced in terms of learning regular sets (i.e., regular languages), although we will also see that
state-merging is used to learn regular relations and probabilistic regular languages as well. Regular
sets are used to exemplify the algorithms because they are simpler and more well studied.

State-merging itself is introduced with respect to an example problem in the acquisition
of phonology. The concrete example is intended to help exposition. The state-merging theorem
(Theorem 3.2), which establishes the soundness of the method, is also presented.

This chapter then discusses rpni, an algorithm which efficiently learns any regular language
from positive and negative data in the sense discussed in the previous chapter. rpni is included
because it reinforces the utility of the state-merging theorem (Theorem 3.2) and the importance of
canonical forms as learning targets, and because the idea behind it underlies successful algorithms,
which learn classes stochastic languages and regular transductions.

These other algorithms for learning regular relations and stochastic regular languages are also
discussed, although in less detail. The chapter concludes with suggestions for further reading.
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3.2 BIAS SELECTION REDUCES THE PROBLEM SPACE
Natural language patterns fall across different regions of the Chomsky Hierarchy. When trying to
understand how such patterns could be learned, there are generally two different strategies that have
been adopted.

One strategy is to define learning so that increasingly larger regions can be learned. An
important idea in this line of work is that different learning frameworks may better characterize
the data presentations learners actually get. For example, in the framework identification in the limit
from positive data, the class of data presentations with which learners must succeed has been criticized
as being too broad, antagonistic, and unrealistic [Clark and Lappin 2011]. Frameworks in which
learners are able to learn large regions of the Chomsky Hierarchy succeed in no small part because
they limit the data presentations with which learners must succeed in significant ways (e.g., to
classes of computable data presentations) [Gold 1967, Horning 1969, Angluin 1988a]; see also
the discussion in Heinz [2015]).

Another strategy is to identify learnable regions which cross-cut the Chomsky Hierarchy.
The idea here is that important properties of natural language are overlooked by the major regions
of the Chomsky Hierarchy, and by restricting the class of languages to be learned, the additional
knowledge that comes with this target class can be harnessed to solve the learning problem. In the
framework identification in the limit from positive data, this means the target class will have to exclude
some finite languages [Gold 1967] and a defining property of such classes is provided by Angluin
[1980]. Many examples of such classes have been studied in the grammatical inference literature.

Both these two strategies have a common theme at their core. The common theme is this:
hard problems are easier to solve with better characterizations. This is because the instance space of
the problem has been reduced in a meaningful way.

A simple example illustrates this general point. The Hamiltonian path problem is the problem
of finding a path in an undirected graph which visits each node vertex in the graph exactly once.
This problem is known to be NP-complete [Garey and Johnson 1979]. However, if the graphs
are restricted to linear sequences (like stations along a single rail line), the problem has a trivial
solution. Note that in both the original and restricted versions of this problem, the instance space
of the problem is countably infinite. But the restriction makes the problem solvable. As anticipated
by Gold [1967], research in grammatical inference has shown that meaningful restrictions of either
the class of data presentations or the class of languages that learners are required to succeed on can
make the learning problem solvable.

This chapter focuses on state-merging, which exemplifies a sound way bias selection (the
second strategy) can be instantiated in algorithms for learning regular languages.
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3.3 REGULAR GRAMMARS
In this chapter, there are three kinds of patterns to be discussed: regular sets, regular relations, and
regular distributions over sets or relations (i.e., regular stochastic sets or relations). Although there
are many ways to define grammars for each of these types of patterns, they are defined here in
terms of finite-state automata. One reason for this is that many kinds of finite-state automata admit
canonical forms. Canonical forms are advantageous because they typically directly reflect invariant
mathematical properties of the patterns they describe. Particular canonical forms for automata will be
introduced shortly.1 Another reason for using finite-state automata is that one of the main techniques
for inferring regular grammars relies on the concept of merging the states of these automata; this
technique is called state-merging.

Deterministic finite-state acceptors (dfa) were defined in Section 1.6. Non-deterministic
finite-state acceptors (nfa) were introduced in Section 2.3.1. They are defined here both for
completeness and so that we can precisely state important theorems later.

For any set of S, let P(S) denote the powerset of S (the set of all subsets of S).

Definition 3.1 (Non-deterministic finite-state acceptor (nfa)) A non-deterministic finite-state
acceptor is a 5-tuple 〈� , Q, I , F , δ〉 for which

. � is the finite set of input symbols, corresponding to the vocabulary;

. Q is a finite set of states;

. I is the finite set of initial states (I ⊆ Q);

. F is the finite set of final states (F ⊆ Q); and

. δ : Q × � → P(Q) is the (total) transition function; given a state q ∈ Q and input symbol
i ∈ �, δ(q , i) returns a set of states Q′ ⊆ Q.

The transition function is extended recursively so that its domain is P(Q) × �∗. Then the language
generated, recognized, or accepted by a finite-state acceptor A is

L(A) = {w ∈ �∗ | δ(I , w) ∩ F �= ∅}.

There are two important facts about the class of nfa. First, it properly includes the class of dfa.
Thus deterministic acceptors are a special type of nfa. Second, the family of languages describable
with nfa is exactly the same as the family of languages describable with dfa: it is the class of regular
languages.

1. In contrast, there are no (computable in polynomial time) canonical (e.g., shortest) regular expressions for regular sets.
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10

σ

 σ ́

FIGURE 3.1: A finite-state acceptor which recognizes the language σ́ σ ∗.

We now wish to introduce two canonical forms of regular languages by way of an example.
Consider � ={σ́ , σ̀ , σ }. These symbols denote strongly stressed, weakly stressed, and unstressed
syllables, respectively. Following the linguistic observation that words can have many weakly stressed
syllables but (usually) at most one strongly stressed syllable, we will refer to the weakly stressed
syllables as secondary stressed and the strongly stressed syllables as primary stressed syllables. Now
consider the finite-state acceptor defined pictorially in Figure 3.1. The states are Q = {0, 1}; the
initial state {0}; the final states {1}; and δ = {(0,σ́ ) �→ {1}, (1,σ) �→ {1}}. Consequently, this acceptor
recognizes the formal language containing all and only those strings which begin with the symbol
σ́ and is then followed by zero or more σ symbols. In other words, this formal language represents
a linguistic pattern in which the initial syllables bear the primary (strongest) stress and the other
syllables are unstressed.

For every regular language L, there are infinitely many finite-state acceptors which recognize
L. However, there is a particular acceptor for L, which is often called the canonical form. This
acceptor is the smallest deterministic acceptor recognizing L.2 An nfa is deterministic provided
|I | = 1 and for all states q ∈ Q and symbols σ ∈ �, it is the case that |δ(q , σ)| ≤ 1 (so there is at
most one state reachable from q on reading σ ).

An important fact about the canonical form of a regular language is that the states are
intimately related to algebraic properties of the language. To explain, it is important to understand
that, for every regular language L, every string w ∈ �∗ can be associated with a residual stringset,
also called the set of good tails. The good tails (or residual) of w with respect to L are all strings v such
that wv ∈ L. The good tails are all the ways in which w can be continued so that the resulting string
belongs to L. Formally, TailsL(w) = {v | wv ∈ L}. Consider the language of the nfa in Figure 3.1,
which would be written with a regular expression as σ́ σ ∗. The good tails of σ́ σ with respect to this
language is the set indicated by the regular expression σ ∗. On the other hand, the good tails of σ σ́

with respect to this language is empty.

2. There are other canonical representations of regular languages, including the syntactic monoid [McNaughton and Papert
1971] and the universal automaton [Lombardy and Sakarovitch 2008].
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Nerode and Myhill considered an equivalence relation over �∗ induced by L: two strings
w1 and w2 are L-equivalent if and only if they have the same set of good tails with respect to L.
Continuing the example above, it is not difficult to verify that the strings σ́ σ , σ́ σσ , and σ́ are all
tail-equivalent with respect to the language σ́ σ ∗.

Nerode and Myhill proved that the L-tail-equivalence relation partitions �∗ into finitely many
blocks if and only if L is a regular language. An important result in their proof is that the states of
the smallest deterministic acceptor recognizing L represent the blocks of this equivalence relation.
In other words, for every canonical acceptor for a regular language, for every state q in this acceptor,
every string which leads to q has exactly the same set of good tails. For this reason, the smallest dfa
is also called the tail canonical acceptor for a regular language L.

In a completely symmetric fashion, one can define the suffixes of a string, the heads of a string
with respect to a language, and a head-equivalence relation.3 The Myhill–Nerode theorem is easily
adapted to this other construction: the regular languages are exactly those for which the L-head-
equivalence relation partitions �∗ into finitely many blocks. The head canonical acceptor is in fact the
smallest reverse deterministic acceptor for a regular language L. An acceptor is reverse deterministic
provided it is deterministic if its reverse acceptor is deterministic. (The reverse nfa switches the
start states with final states, and points the transitions in the other direction. Formally, for an nfa
A = 〈� , Q, I , F , δ〉, the reverse of A is Ar = 〈� , Q, F , I , δr〉 where δr(q , i) = {q ′ | q ∈ δ(q ′, i)}.)

The head canonical acceptor and tail canonical acceptor have different structures, which reflect
their right-to-left and left-to-right orientations, respectively. While the left-to-right orientation
may appear more natural for production (since time moves “left to right”), there is a reason to think
accessing strings right-to-left plays a role in cognition. If strings are stored in memory in a first-
in/last-out fashion (like plates stacked on one of those cafeteria-style spring-based storage systems)
then when accessing the string from memory, it will be read right-to-left.

These results for tail and head canonical acceptors are important for learning because it
provides a way to distinguish or not distinguish the underlying states based on information present in
the strings. If there is reason to believe that two observed prefixes (suffixes) w1 and w2 of a language
have the same set of tails (heads), then those two prefixes (suffixes) will lead to the same state in
the tail (head) canonical acceptor. On the other hand, if there is reason to believe w1 and w2 do not
have the same set of tails (heads) then they should lead to different states in the tail (head) canonical
acceptor. As we will see below, there can be reasons why two observed prefixes (suffixes) have the

3. Formally, v is a suffix of w iff there exists u ∈ �∗ such w = uv. The good heads of v with respect to L are all strings u

such that uv ∈ L. Two strings v1 and v2 are L-head-equivalent if and only if they have the same set of good heads with
respect to L.
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same set of tails (heads) or not. This connection is made more explicit in Sections 3.5 and 3.6, below,
after its mechanics are introduced.

3.4 STATE-MERGING ALGORITHMS
State-merging is a technique which refers to a class of algorithms. It will be emphasized that one
way different state-merging algorithms can be obtained is by altering the criteria for deciding which
states should be merged.

State-merging is a method of writing smaller and smaller finite-state descriptions of observed
strings while keeping some property invariant. The general scheme of learners of this type follow a
two-step procedure.

1. A finite-state representation of the input.

2. Merge states that are equivalent (in some predetermined sense).

Which finite-state representation of the input is used and how it is decided which states
to merge in this structure are the two key questions involved when developing a state-merging
algorithm. These decisions determine everything: the kinds of generalizations that are made, and
ultimately the kinds of patterns which can be learned.

Below we first explain the process of merging states in a finite-state acceptor—what it is and
how it works. Then we explain how the input to the learning algorithm can be represented as a
finite-state acceptor. We conclude with the state-merging theorem, which establishes the soundness
of this approach to learning to regular languages. The theorem is possible partly from the fact that
there are canonical representations of regular languages. Along the way, we illustrate these ideas with
examples, drawing in particular on a problem children face when learning the phonology of their
native language.

3.4.1 THE PROBLEM OF LEARNING STRESS PATTERNS
Before continuing further, let us illustrate one problem in phonological acquisition which well help
along the exposition regarding state-merging: the problem of learning the stress pattern of one’s
native language (if one exists) from syllabic representations of words.

Many languages have stress patterns. For example, consider the words in Pintupi shown in
Table 3.1 [Hansen and Hansen 1969, p. 163]. If we abstract to the level of syllables, the pattern
stands out more clearly, as shown in Table 3.2. Hayes [1995, p. 62] described the stress pattern of
Pintupi as follows:

1. primary stress falls on the initial syllable, and

2. secondary stress falls on alternating non-final syllables.
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TABLE 3.1: Pintupi words

a. páŋa “earth”
b. tjú�aya “many”
c. má�awàna “through from behind”
d. pú�iŋkàlatju “we (sat) on the hill”
e. tjámulı̀mpatjùŋku “our relation”
f. �ı́�irìŋulàmpatju “the fire for our benefit flared up”
g. kúranjùlulı̀mpatjù�a “the first one who is our relation”
h. yúma�ı̀ŋkamàratjù�aka “because of mother-in-law”

TABLE 3.2: Pintupi words with a
syllabic representation

a. σ́ σ e. σ́ σ σ̀σ σ̀σ

b. σ́ σσ f. σ́ σ σ̀σ σ̀σσ

c. σ́ σ σ̀σ g. σ́ σ σ̀σ σ̀σ σ̀σ

d. σ́ σ σ̀σσ h. σ́ σ σ̀σ σ̀σ σ̀σσ

q1 q2

q3

q0

q4

σ σ

σ

 σ ́

 σ̀

FIGURE 3.2: A minimal, deterministic, finite-state acceptor for Pintupi stress.

These generalizations can be encoded as a finite-state acceptor, as shown in Figure 3.2.
Here is a different example of a stress pattern found in the world’s languages: the unbounded

stress pattern in Kwakwala [Walker 2000]:

1. Primary stress falls on the left-most heavy syllable in a word, and if there are no heavy syllables,
it falls on the final syllable.
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TABLE 3.3: All LHOR words up to four syllables in length

H́ Ĺ H́ L H́ H L H́
L Ĺ H́ L L H́ L H H́ H L H́ H H
L H́ L L H́ H L L Ĺ L L H́ L H́ L L
L H́ L H H́ L L L H́ L L H H́ H L L H́ H L H
L H́ H L L H́ H H H́ L H L H́ L H H H́ H H L
H́ H H H L L H́ L L L H́ H L L L Ĺ L L L H́

Many languages, like Kwakwala, distinguish between “light” and “heavy” syllables. The “weight” of
a syllable can be determined by vowel length, presence of a coda, and potentially many other factors
[Gordon 2006].

Following Hayes [1995], we refer to this pattern as the “Leftmost Heavy Otherwise Right-
most” (LHOR) pattern. According to this generalization, in words with syllable profiles LLH,
LLHL, and LLHLH, the primary stress will always fall on the third syllable because that is the left-
most heavy syllable in each word.4 Table 3.3 shows all words up to four syllables in length which
exemplify this pattern. This pattern is unbounded because the primary stress could fall arbitrarily
far from either word edge. For example, in words with the syllable profile LLLHLLH, stress is
predicted to fall on the fourth syllable. On the other hand, according to the rule, a word with only
light syllables will have stress fall on the final syllable of the word (as in LLLLĹ).

Just as with the Pintupi, it is important to realize that the generalizations above apply equally
well to longer words, even if no such words of that length exist in the lexicon (or are constructible by
word formation rules). The words in Table 3.3 are just among the shortest words drawn from this
set. Letting � ={H, H́, L, Ĺ}, the finite-state acceptor in Figure 3.3 describes this infinite set, and
thus captures the linguistic generalization faithfully.

More generally, the linguistic generalizations that phonologists make when describing the
dominant stress patterns in languages can be thought of as infinite sets. Our interest in the nature of
these phonological generalizations leads us to examine the nature of these mathematical objects—the
infinite sets with which these generalizations are identified.

These examples are introduced in order to concretely establish the nature of the learning
problem. What algorithm can take the finite sets of data in Tables 3.2 and 3.3 as input and output
the finite-state acceptors in Figures 3.2 and 3.3, respectively? State-merging algorithms are one
important method that can solve this problem.

4. Hence a transcription with stress marked would read LLH́, LLH́L, and LLH́LH, respectively. It is important not to
confuse syllable weight with stress. Here, L and H indicate unstressed “light” and “heavy” syllables, whereas Ĺ and H́ will
be used to indicate light and heavy syllables bearing primary stress, respectively.
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L

LHOR

L, H
H́

Ĺ

FIGURE 3.3: A minimal, deterministic, finite-state acceptor for Kwakwala stress.

30 1

a

Machine A

a
2

a a
30 1–2

Machine B

a a

FIGURE 3.4: Machine B represents the machine obtained by merging states 1 and 2 in Machine A.

3.4.2 MERGING STATES
When distinct states are merged, they become a single state. A key concept in state-merging is
that transitions are preserved [Angluin 1982, Hopcroft et al. 2001]. This is one way in which
generalizations may occur—because the post-merged machine accepts everything the pre-merged
machine accepts, possibly more.

For example in Figure 3.4, Machine B is the machine obtained by merging states 1 and 2 in
Machine A. It is necessary to preserve the transitions in Machine A in Machine B. In particular,
there must be a transition from state 1 to state 2 in Machine B. There is such a transition, but because
states 1 and 2 are the same state in Machine B, the transition is now a loop. Whereas Machine A
only accepts one word aaa, Machine B accepts an infinite number of words aa, aaa, aaaa, . . . .

Some observations regarding the example in Figure 3.4 are in order. First, the post-merged
machine may not be deterministic. Second, the merging process does not specify which states should
be merged. It only specifies a mechanism for determining a new machine once it has been decided
which states are to be merged. Thus, the choice of which states are to be merged determines the
kinds of generalizations that occur. A merging strategy is thus a generalization strategy.

Also, observe that once the equivalence of states is determined, this effectively partitions the
states of the acceptor into different regions, or blocks. It follows from the definition below that the
order in which the states in these regions are merged is inconsequential.
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Formally, let A = 〈� , Q, I , F , δ〉 be any nfa. Consider any partition π of Q, and let B(q , π)

refer to the set of states in the same block of the partition as state q. Then merging states in the same
blocks of A according to π yields another acceptor A/π = 〈�′, Q′, I ′, F ′, δ′〉 defined as follows:

�′ = �

Q′ = {B : B(q , π) such that q ∈ Q}
I ′ = {B : B(q , π) such that q ∈ I }
F ′ = {B : B(q , π) such that q ∈ F }

δ′(B0(q0, π), a) = {B1(q1, π) : q1 ∈ δ(q0, a)}.
A/π is sometimes called the quotient of A and π . Notice that any block containing at least one
final (initial) state is itself a final (initial) state in the new machine. Similarly, if there is at least one
transition labeled a from any state in block B0 to another state in block B1 then in the new machine
there is a transition from B0 to B1 labeled a.

The reason state-merging can result in generalization follows from the directly from the
following theorem whose origin is unknown. A proof is given in Heinz [2007].

Theorem 3.1 Let A be any acceptor and π any partition of Q. Then L(A) ⊆ L(A/π).

Thus, according to this theorem, any word accepted by the pre-merged machine will also be accepted
by the post-merged machine. The language generated by post-merged machine is necessarily a
superset of the pre-merged machine, and this superset language may be infinite in size. Thus, in
a very direct way, state-merging shows how it is possible to obtain a grammar which represents a
linguistic generalization corresponding to an infinite set from a finite input sample. So this theorem
indicates that state-merging is fully capable of modeling such a language learning process. Let us
now turn to how the finite input to these algorithms is represented.

3.4.3 FINITE-STATE REPRESENTATIONS OF FINITE SAMPLES

Prefix Trees
A prefix tree acceptor (pta) is a structured, finite-state representation of a finite sample. The idea is
that each state in the tree corresponds to a unique prefix in the sample. Here the word “prefix” is not
used in its morphological sense, but in its mathematical sense.

Formally, a string u is a prefix of a string w iff there exists a string v ∈ �∗ such that w = uv. For
every word w, the prefixes of w are prefixes(w) = {u | u is a prefix of w}. This function’s domain
can be extended to languages in the usual way: prefixes(L) = ⋃

w∈L prefixes(w). For every set
of strings S, we let �(S) refer to the alphabet of S.

Now prefix trees can be defined.
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FIGURE 3.5: A prefix tree of Pintupi words.

Definition 3.2 pta(S) is defined to be the nfa 〈� , Q, I , F , δ〉 such that

� = �(S)

Q = prefixes(S)

I = {λ}
F = S

δ(u, a) = ua iff u, ua ∈ Q.

An example is shown in Figure 3.5, which shows a prefix tree of the syllabic profiles of the
eight Pintupi words given in Table 3.2.5

Observe that pta(S) can be computed efficiently in the size of the sample S. pta(S) can be
computed batchwise from a sample S, or iteratively. In the latter case, as each word is added, an
existing path in the machine is pursued as far as possible. When no further path exists, a new one
is formed. When a word w is added to a prefix tree pta(S), we speak of extending the prefix tree
acceptor with w.

Observe further that even in the simple example in Figure 3.5, it is possible to see that there is
structure in the prefix tree acceptor, and that this structure repeats itself. State-merging can eliminate
this structural redundancy, resulting in generalization.

Suffix Trees
Prefix tree acceptors are not the only way to represent a finite sample as a finite-state machine.
Another representation is suffix tree acceptors, which are reverse deterministic representations of
the sample.

5. We have enumerated the names of the states for convenience. Strictly speaking, according to the definition, state 0 is λ,
1 is σ́ , 2 is σ́ σ , 3 is σ́ σ σ̀ , and so on.
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FIGURE 3.6: A suffix tree for Pintupi words.

Formally, a string u is a suffix of a string w ifdef there exists a string v ∈ �∗ such that
w = vu. The suffixes of words and languages are defined analogously as above and is denoted with
suffixes(.).

Definition 3.3 sta(S) is defined to be the acceptor 〈� , Q, I , F , δ〉 such that

� = �(S)

Q = suffixes(S)

I = S

F = {λ}
δ(au, a) = u iff u, ua ∈ Q.

As an example, Figure 3.6 shows a suffix tree for the same eight Pintupi words.
Like prefix trees, suffix trees can also be constructed efficiently with batch or iterative algo-

rithms.

3.4.4 THE STATE-MERGING THEOREM
It has been proved that if a sample of words generated by some nfa is sufficient—that is, exercises
every transition in this nfa—then there exists some way to merge states in the prefix tree to recover
the generating nfa [Angluin 1982]. Although we do not know which states should be merged, we
are guaranteed that there is a way to merge such states to recover the original machine. We know
such a partition exists.

The theorem is given below after some helpful definitions.

Definition 3.4 Let A = 〈� , Q, q0, F , δ〉 be a tail canonical acceptor, and let w ∈ L(A). Then the
transition set of w are those transitions in δ that make up the path of w through A (recall that for
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each w ∈ L(A), there is a unique path since A is tail canonical). We denote the transition set of w

in A with Trans setA(w).

Definition 3.5 Let A = 〈� , Q, q0, F , δ〉 be a canonical finite-state acceptor. Then S is a sufficient
sample of A ifdef

⋃
w∈S Trans setA(w) = δ and for all qf ∈ F , there is a word w ∈ S such that

δ(q0, w) = qf .

Pictorially, we can imagine, as A computes the path of some word w, coloring the states and
transitions along this path. If a sample S is sufficient for a canonical acceptor then every state and
transition will be colored after every word in S is processed. Additionally, we can imagine marking
final states when we reach the end of the string. Importantly, since Q is finite, there will be sufficient
samples that only contain finitely many strings.6

Theorem 3.2 Let A = 〈� , Q, I , F , δ〉 be a tail canonical finite-state acceptor, S a finite sufficient
sample of A, and pta(S) = 〈�PT , QPT , IPT , FPT , δPT 〉. Then there exists a partition π over QPT

such that pta(S)/π is isomorphic to A.

A corollary follows that state-merging over suffix trees is also viable.

Corollary 3.1 Let A = 〈� , Q, I , F , δ〉 be a head canonical finite-state acceptor, S a finite suffi-
cient sample of A, and sta(S) = 〈�ST , QST , IST , FST , δST 〉. Then there exists a partition π over
QST such that sta(S)/π is isomorphic to A.

A proof of the theorem and its corollary can be found in Heinz [2007].
The significance of this theorem (and corollary) should not be overlooked. Provided the

learning data D exercises every transition in the target finite-state grammar, there is a way to merge
states in the prefix tree built from D which exactly yields the learning target. Since there are only
finitely many transitions, only a finite sample is needed to meet this condition. Thus, the possibility
is raised that—for some subclass of the regular languages—there is a state-merging strategy which
identifies that class in the limit from positive data.

State-merging algorithms therefore can be stated very simply. Given a finite sample S, a state-
merging algorithm first computes either the prefix or suffix tree of S, and then computes a partition
π of this tree and finally computes the quotient of this tree according to the partition π . In other
words, the algorithm returns a machine M equal to the following:

M = T (S)/π , (3.1)

6. Typically, a shortest transition set can be constructed as follows. For each state q, take the shortest string w that reaches
q from the initial state. Then, to this set add wa for each a ∈ �.
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64 3. LEARNING REGULAR LANGUAGES

where T (S) is either a prefix or suffix tree acceptor. In this way, state-merging algorithms are able
to determine the global structure of the final dfa through a series of local decisions in the prefix
tree. This is possible because the canonical form of the dfa provides a sound rationale for such local
decisions to be made. States are merged if there is reason to believe that distinct prefixes have the
same set of tails, according to the Myhill–Nerode relation.

The problem of learning stress patterns can now be restated in this context. How can states
be merged in the prefix tree for Pintupi (Figure 3.5) to return an acceptor equivalent to the one in
Figure 3.2? Will the same merging strategy yield the stress pattern of Kwakwala (Figure 3.3) when
given a prefix tree acceptor for Kwakwala words?

3.5 STATE-MERGING AS A LEARNING BIAS
Theorem 3.2 establishes a key result: Given any tail canonical acceptor A for any regular language
and a sufficient sample S of words generated by this acceptor, there is some way to merge states in the
prefix tree of S which returns the acceptor A. This result does not tell us which states to merge for
a particular acceptor. It just says that there is partition of states whose blocks, once merged, would
yield an acceptor isomorphic to the canonical one. Nonetheless, the result is important because it
leaves open the possibility that there is some property of a class of regular sets we may be interested
in for which there is a successful state-merging strategy.

This section reviews state-merging strategies that have been employed for learning regular sets
and regular relations and the kinds of regular sets and relations that are learnable by those strategies.

One strategy for merging states examines structural properties of the tree acceptors. For
example, two states may be deemed equivalent if they share the same incoming paths of length
2. Formally, this means states in the prefix tree pta(S) = 〈� , Q, I , F , δ〉 are merged if they have
the same k-length suffix. For all u, v ∈ Q:

u ∼ v ifdef ∃x , y , w such that |w| = k , u = xw, v = yw. (3.2)

This state-merging algorithm then is simply the one shown in Equation 3.3:

G = pta(S)/π∼. (3.3)

To illustrate the algorithm, consider the prefix tree for Pintupi words (Figure 3.5). It is easily
seen that states 4 and 7 share the same incoming path (σσ ). States 3 and 6 share σ̀ σ , and 5 and 8
share σ σ̀ . Merging these states yields the Figure 3.7. The acceptor in Figure 3.7 is not the canonical
acceptor for Pintupi, but it does recognize the same language.

In fact, this algorithm provably identifies in the limit from positive data the Strictly (k + 1)-
Local class of languages [Garcı́a and Vidal 1990]. Strictly k-Local languages are a subregular class
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FIGURE 3.7: The result of merging states in the prefix tree for Pintupi words (Figure 3.5) with the same
incoming paths of length 2.

of formal languages which are the non-stochastic counterparts to n-gram models (where n = k + 1).
They have been studied extensively [McNaughton and Papert 1971, Rogers and Pullum 2011,
Rogers et al. 2013].

Edlefsen et al. [2008] study whether 109 distinct stress patterns are Strictly k-Local and if so
for what k. These 109 patterns are taken from typological studies [Bailey 1995, Gordon 2002] and
have been encoded as nfa [Heinz 2009].7 They find that only 44 of these patterns are Strictly 2-
Local and 81 are Strictly 5-Local. They find that the other 28 are not Strictly k-Local for any k. In
other words, even permitting very generous input samples, only 81 of the patterns can be learned
by merging states with the same incoming paths of length 5, and 28 cannot be learned by merging
states with the same incoming paths of length k, for any k. Is there a state-merging strategy that
works for all 109 distinct stress patterns?

There are other ways to merge states. Generally, two strategies are followed. First, if the current
structure is “ill-formed” then merge states to eliminate sources of ill-formedness. The state-merging
strategy described above is an example of this approach. A prefix tree with multiple states with the
same incoming path of length k is “ill-formed” and this “defect” is corrected by merging these states.
Angluin [1982] recursively merged states to eliminate reverse non-determinism and proves that this
procedure identifies the 0-reversible languages (and generalizes the procedure to learn the class of
reversible languages). Muggleton [1990] merged states with the same “contexts” of size k and proves
the learnability of the k-contextual languages. Heinz [2008] merged final states and proves this
procedure learns the class of left-to-right iterative languages, which are classes related to the zero-
reversible class. This kind of state-merging has also been studied in the context learning stochastic
regular languages. For example, Stolcke [1994] merged states to maximize posterior probability (for

7. These nfa are available at http://st2.ullet.net.

http://st2.ullet.net
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hmms), and Carrasco and Oncina [1999] merged states in a prefix tree if the residual stochastic
language of each prefix with respect to the tree are sufficiently similar.

The second merging strategy is to enumerate the states in the prefix tree and begin to merge
states in that order unless “ill-formed” structures arise. For instance, rpni merges states unless the
resulting generalization is inconsistent with the negative data (the finite sample to rpni includes
both positive and negative examples). Similarly, Oncina et al. [1993] proved the learnability of
subsequential transducers by merging states unless “onward subsequentiality” is lost. Clark and
Thollard [2004] presented a learnability result for regular stochastic languages by merging states
unless they are “μ-distinguishable.” These algorithms are discussed in further detail below.

To summarize, state-merging strategies instantiate learning biases. This is because distinctions
maintained in the prefix tree (or suffix tree) are lost by state-merging, which results in generalizations.
The choice of partition corresponds to the generalization strategy (i.e., which distinctions will be
maintained and which will be lost). As Gleitman [1990, p. 12] wrote:

The trouble is that an observer who notices everything can learn nothing for there is no end of
categories known and constructible to describe a situation. [emphasis in original]

The prefix tree keeps track of all the information, and state-merging deliberately ignores some of it,
leading to generalization. Which information should be ignored and which should be kept is at the
heart of learning, and at the heart of state-merging.

3.6 STATE-MERGING AS INFERENCE RULES
One of the important insights that state-merging learning strategies has led to is the relationship of
the Nerode-equivalence relation to other kinds of equivalence relations. Two examples will serve to
illustrate.

Again consider the strictly k-local languages [McNaughton and Papert 1971, García et al.
1990], which can be learned by merging states with same incoming paths of length k. Because
these states are merged it means any two prefixes of the languages with the same k-length suffix
have exactly the same residuals; that is, they have the same set of good tails. Formally, this can be
stated as an inference rule: ∀u, v , w ∈ �∗ : uv , wv ∈ prefixes(L) with |v| = k then TailsL(uv) =
TailsL(wv). This property turns out to be a characteristic property of the strictly local languages
known as the suffix substitution property [Rogers and Pullum 2011]: a language L is Strictly Local
ifdef ∃k such that if uvx , wvy ∈ L and |v| = k then uvy , wvx ∈ L. The state-merging makes clear
why this property holds—paths uv and wv will lead to the same state.

Another example comes from the 0-reversible languages [Angluin 1982]. Angluin showed
that by merging states to eliminate reverse non-determinism that ∀u, v , w, y ∈ �∗ if uv , wv , uy ∈ L

then wy ∈ L. In other words, if two prefixes u and w share one good tail then they share all good tails.
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The insights by understanding these state-merging algorithms in terms of inference rules of
the above types have led to a number of algorithms for learning non-regular languages under the
name “distributional learning” [Clark and Eyraud 2007, Yoshinaka 2009, Clark and Lappin 2011].

3.7 RPNI
rpni is an acronym for Regular Positive and Negative Inference. As its name indicates, rpni is
unlike the state-merging algorithms considered so far because it relies on both positive and negative
evidence. A detailed discussion (with theorems and proofs) along with a clear explanation of an
example run of rpni is provided by de la Higuera [2010]. The brief discussion draws highlights
from de la Higuera’s discussion there.

3.7.1 HOW IT WORKS
Like the state-merging algorithms above, rpni first builds a prefix tree from the positive data. Note
that the negative data is not expressed in the prefix tree. There is only one way in which it could in
fact be expressed. If a negative data point w was a prefix of a positive data point wv, then the state in
the prefix tree corresponding to w could be marked as “definitively not a final state.” This foretells
how the merging procedure in rpni uses the negative evidence.

After the prefix tree is built, the states are enumerated in a breadth-first fashion. Figure 3.8
illustrates a breadth-first enumeration of a prefix tree. Pairs of states are merged (and then tested)
according to this enumeration. So in Figure 3.8, rpni first merges states 0 and 1 and tests the
consequences (see below). This test determines whether those states should stay merged or if the
merge should be undone. Afterwards, in either case, it considers the next pair of states in the
enumeration. In this example, that would be states 0 and 2, then 0 and 3, then 1 and 2, and so on.

One consequence of this particular enumeration is that whenever two states are merged, one
of those states will always be the root of a subtree. In other words, the tails of one of the two states
being merged in the prefix tree will always be finite.8

The automata obtained from merging of two states is then tested against the negative evidence.
If this automata rejects all the available negative evidence then the test is a success; otherwise it fails.
If the test fails, merging of the two states is undone, and the two states remain distinct henceforth.

To see why the test could fail, recall that if a final state is merged with a non-final state, the
resulting state is also final. If this non-final state is one that must be non-final given the negative
evidence, then the test will fail. For instance, if trying to learn a regular language L, the positive
examples in Figure 3.8 are provided, and it is known that a �∈ L, then merging states 1 and 2 will

8. In de la Higuera’s book, these are referred to as the “blue” states.
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FIGURE 3.8: A prefix-tree whose states have been enumerated in breadth-first fashion.

be rejected. This is because the merged state will be final which would result in an automata which
misclassifies the string a. This is how rpni uses negative evidence.

Another important detail regarding rpni is how it handles non-determinism. Recall that
state-merging can (and often does) lead to non-determinism. Essentially, once a pair of states has
been merged, the non-determinism is eliminated by “folding” the tree branching from one of the
merged states into the rest of the existing automata, extending it as necessary. Thus, if a merge is
rejected, the folding must also be undone.

3.7.2 THEORETICAL RESULTS
Oncina et al. [1993] proved that the rpni efficiently identifies all regular languages in the limit from
positive and negative data. The proof establishes the existence of a (finite) characteristic sample for
each regular language. This characteristic sample can be determined from the tail canonical acceptor.
Essentially, the positive data comes from a finite set of words which exercise every transition (and
final states) in the automata. The crucial negative evidence comes from data points which show that
every two states in the canonical acceptor do not have the same set of tails. Since both the positive
and negative evidence are finite, the entire sample itself is finite as well.

As an example, consider the canonical acceptor for Pintupi stress. A negative data point which
distinguishes states 2 and 3 would be σ́ σσ σ̀σ since σ̀ σ is a tail of σ́ σ (which leads to state 2), but
it is not a tail of σ́ σσ (which leads to state 3).
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One important aspect of rpni is that it is an efficient algorithm in a couple of different senses.
First, its execution time is polynomial in the size of the sample. Second, and more interestingly, the
size of the characteristic sample is polynomial in the size of the canonical acceptor for the target
regular language.

It is the second property which distinguishes rpni from learners mentioned in Chapter 2.
Recall in Section 2.2.2 that there are learning algorithms that are able to learn the entire computably
enumerable class from positive and negative data. These algorithms enumerated all the logically
possibly grammars and just hypothesized the first one in the enumeration consistent with all the
data considered so far. These “enumerative learners” were troubling because while they met the letter
of the definition of learning, they did not meet its spirit. They were not insightful, and suggested
something about the definition was not correct.

One way to improve the definition was to require learning to be efficient in some sense. Of
the two senses mentioned above, with respect to regular languages—polynomial-time computability
in the size of the data and polynomial size of the characteristic sample in the size of the canonical
acceptor for target language—only the latter is meaningful. This is because Pitt [1989] showed that
any enumerative learner can be made polynomial-time computable in the size of the data with a
method now referred to as Pitt’s trick. (See also de la Higuera [1997, 2010], Eyraud et al. [2015].)

No such trick is known to exist for the second sense, which is “polynomial size of the
characteristic sample in the size of the canonical acceptor.” Thus, it is this second sense which makes
rpni an interesting contribution to the problem of inference of regular languages from positive and
negative data.

3.8 REGULAR RELATIONS
Regular relations are those relations that can be described with non-deterministic finite-state trans-
ducers. Many problems in computational linguistics, such as transliteration, letter-to-phoneme
conversion, and machine translation, are problems about learning relations.

Subsequential relations are a subclass of the regular relations. They are those regular relations
which describe functions for which a finite-state transducer which processes the input determinis-
tically exists. They can also be described informally as weighted deterministic acceptors where the
weights are strings and multiplication is concatenation.

Formally, a subsequential transducer is a tuple 〈Q, q0, X, Y , σ , δ〉, where Q is a finite set
of states, X and Y are finite alphabets, q0 ∈ Q is the initial state, and σ ⊆ Q × Y ∗ is the output
function. The transition function δ ⊆ Q × X × Y ∗ × Q is necessarily deterministic:

(q , a , u, r), (q , a , v , s) ∈ δ ⇒ u = v ∧ r = s .
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70 3. LEARNING REGULAR LANGUAGES

The transition function δ is also recursively extended to δ∗. The relation that a subsequential
transducer T = 〈Q, q0, X, Y , σ , δ〉 recognizes/accepts/generates is

R(t) =
{

(x , yz) ∈ X∗ × Y ∗ | (∃q ∈ F)

[(q0, x , y , q) ∈ δ∗ ∧ z = σ(q)]
}

.
(3.4)

Since subsequential transducers are deterministic, the relations they recognize are functions. Sub-
sequential transducers have been generalized to permit up to p outputs for each input and Mohri
[1997] showed that many desirable properties are preserved.

Like nfa, subsequential transducers have a canonical form [Oncina et al. 1993], which
associates the states of the canonical machine to classes of a Nerode-like equivalence. In addition to
the aforementioned properties of subsequential transducers, these canonical machines are “onward,”
which means the transducer, as it reads the input, minimally delays writing the output (so not at all
or as little as possible).

Oncina et al. [1993] presented the Onward Subsequential Transducer Inference Algorithm
(ostia), which provably identifies subsequential functions in the limit from positive data. For every
subsequential function f , the input to the algorithm is a finite sample of pairs (w, f (w)). ostia is
similar to rpni because pairs (w, f (w)) provide a form of (indirect) negative evidence. If (x , y) ∈ f

then for all z �= y it must be the case that (x , z) �∈ f .
ostia first builds an onward prefix tree. An onward prefix tree is constructed based on the input

strings and the outputs are pushed as close to the root of the tree as possible to ensure onwardness.
Then the algorithm merges states in a manner similar to rpni. It enumerates the states in the prefix
tree in a breadth-first fashion and then greedily merges states unless onward subsequentiality is lost.

Oncina et al. [1993] proved that ostia identifies total subsequential functions in the limit
from positive data. Again, no negative data is required (unlike rpni) because the positive data, in
conjunction with the knowledge that a function is being learned, provides indirect negative evidence.

Interestingly, for partial subsequential functions f , ostia is also guaranteed to succeed in the
sense that it returns a subsequential function f ′ such that for all w in the domain of f it is the case
that f ′(w) = f (w). But, interestingly, if f is not defined on w, f ′ may be! Oncina et al. [1993]
reported an interesting experiment on learning the function converting Roman numerals to Arabic
numerals, where the function returned by ostia correctly translates well-defined Roman numerals
like “XVIII” but returns uninterpretable numbers on ill-defined Roman numerals like “VXIII.”

Also, in later work Oncina and colleagues overcome this challenge by changing the nature
of the learning problem. If the learning problem is to identify a subsequential transduction given a
learning sample and the domain of the transduction (given as a dfa) then they showed even partial
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subsequential transduction can be efficiently identified exactly [Oncina and Varó 1996]. Similarly,
they show how additional knowledge of the range helps in a similar way [Castellanos et al. 1998].

ostia has also been applied to phonological rule learning. Gildea and Jurafsky [1996] show
that ostia does not learn the English tapping rule or German word-final devoicing rule from data
present in adapted dictionaries of English or German. They explain that the sufficient sample that
ostia needs to converge (and is guaranteed to receive as input at some finite point in theory under the
identification in the limit from positive data paradigm) is not present in these adapted dictionaries.
This is not just a matter of quantity and needing larger dictionaries. It is also a matter of quality.
The sufficient sample needed by ostia to learn these phonological rules may require words that
violate inviolable constraints in English and German, such as the logically possible word ttt . Gildea
and Jurafsky [1996] went on to apply additional phonologically-motivated heuristics to improve
state-merging choices and obtain significantly better results.

More recently, Chandlee [2014] shows local phonological processes can be characterized by
a class of subsequential functions. This subclass is called input strictly local because they are defined
analogously to the strictly local languages. Chandlee et al. [2014] provides a state-merging algorithm
which learns this subclass in the limit from positive data more efficiently than ostia or its variants.
Jardine et al. [2014] provides another algorithm for learning this subclass from positive examples in
linear time and data as well as other subclasses whose underlying structure is known and fixed in
advance. These algorithms are similar in flavor to the variants of ostia which also assume additional
a priori knowledge [Oncina and Varó 1996, Castellanos et al. 1998] (but in terms of the nature of
the transduction in addition to knowledge of the domain or range).

3.9 LEARNING STOCHASTIC REGULAR LANGUAGES
In this section, the grammatical inference of regular stochastic languages is examined. After defining
regular stochastic languages, the first problem is considered: how to estimate the parameters, from
a sample, of a stochastic language belonging to a class of subregular distributions describable with a
deterministic finite-state acceptor (pfa). This problem has a known solution under the Maximum
Likelihood Estimate criteria. After discussing two classes of subregular stochastic distributions,
we move to state-merging algorithms which are able to efficiently learn the entire class of regular
deterministic stochastic languages under different learning criteria. Methods that target the larger
class of regular non-deterministic stochastic languages are then discussed. This discussion includes
mention of the results of the recent pautomac competition, where teams competed to develop
algorithms that could best learn deterministic and non-deterministic regular stochastic languages
[Verwer et al. 2014].

wjj
高亮



72 3. LEARNING REGULAR LANGUAGES

3.9.1 STOCHASTIC LANGUAGES
A stochastic language is a probability distribution over �∗. As explained in Chapter 2, this means
that

1. each word in �∗ is assigned some probability between zero and one, and

2. the sum of all the probabilities adds to one.

Like formal (non-stochastic) languages, there are different classes of stochastic languages. As with
non-stochastic languages, the field of grammatical inference is interested in finding algorithms that
can successfully learn every distribution in a class, under some rigorous definition of successful
learning.

One way to define classes of stochastic languages is in terms of the support of the stochastic
languages. The support of a stochastic language is the non-stochastic language obtained by the set of
strings with non-zero probabilities. While it is natural to define regular stochastic languages as those
with regular support (and context-free stochastic languages as those with context-free support and
so on), these are not very useful definitions. For instance, if regular stochastic languages are defined
as those with regular support then very powerful grammars are necessary to compute them [Kornai
2011]. This result, originally due to Ellis [1969], is because there are logically possible distributions
with regular support where the probabilities contain irrational values. In fact, Kornai (Theorem 1)
actually shows that even probabilistic context-free grammars cannot describe all stochastic languages
with regular support. Consequently, the distinctions afforded by the traditional class boundaries—
regular, context-free, context-sensitive, and computably enumerable—are lost. For this reason we
define classes of stochastic languages in terms of the grammars, and not in terms of their support.

It is common in computational linguistics for stochastic grammars of a certain type to be
defined as their non-stochastic counterparts. For instance, a probabilistic context-free grammar is
simply a context-free grammar where the production rules have been augmented with probabilities in
an appropriate fashion. Similarly, regular stochastic languages can be defined to be those describable
with finite-state machines augmented with probabilities on the transitions. (This class turns out
to be exactly the same class of distributions that can be represented with hidden Markov models
[Vidal et al. 2005]; see Chapter 2). When classes of stochastic languages are defined in this way,
the traditional boundaries remain [Kornai 2011, Theorem 2]. For example, with these definitions,
any distribution defined by a stochastic nfa can be defined by a pcfg, but not vice versa. It is this
(grammar-based) definition that we use when discussing families of stochastic languages.

As with classes of formal languages, even if two classes are learnable under some definition
of learning, there is typically a trade-off in the amount of time and data necessary to converge to
the target grammar depending on the nature of the target class. The more structured the class (and
hence typically less expressive), the easier learning tends to be.
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3.9 Learning Stochastic Regular Languages 73

As mentioned, regular distributions are those obtained by assigning probabilities to the
transitions of each state in a (possibly non-deterministic) finite-state acceptor.9 Consequently, there
are two problems when trying to learn a regular distribution: one is trying to learn the structure of the
finite-state acceptor, and one is trying to learn the probabilities on the transitions. By structure of the
acceptor, we mean the state set and the transitions between the states. Since any missing transition
can be modeled as an existing transition with zero probability, the structure of every acceptor can
be considered to be fully connected (every transition with every letter of the alphabet exists between
every two states). This effectively reduces the structure of the machines to a single number—the
number of states in the acceptor.

Learning the class of regular distributions is not easy, but there has been substantial theoretical
progress in grammatical inference which addresses this problem. We begin this section with a much
easier problem: learning very structured classes of distributions using the Maximum Likelihood
Estimate as the learning criterion.

Many readers are probably familiar with this style of learning since it underlies commonly
used techniques in natural language processing (such as n-grams). An orthodox presentation can be
found in many places, such as Geman and Johnson [2004].

However, the presentation here is unorthodox because it is being presented from the perspec-
tive of grammatical inference. Our focus is on well-defined classes of distributions, well-defined
presentations of data drawn from these distributions, well-defined learning criteria that make clear
what successful learning is, and algorithms that successfully learn any distribution from the class
under this learning criteria.

3.9.2 STRUCTURE OF THE CLASS IS DETERMINISTIC
AND KNOWN A PRIORI

One way a class of stochastic distributions can be described is with a single deterministic finite-state
acceptor. The dfa represents a class of distributions—the ones obtainable by placing probabilities on
the transitions in the dfa. In order to keep the grammatical representation finite, it will be important
to constrain the probabilities on the transitions in some fashion. It is common to assume they have
rational values and cannot be any real value. We will abstract away from this issue here.

Clearly, this class is properly contained within the class of regular distributions. For a dfa
M, let DM denote this class of distributions. This class essentially fixes the structure, and thus
the only learning problem is to learn probabilities of the transitions. Figure 3.9 illustrates a class of
distributions and a particular distribution within the class.

9. Here, and in the sequel, we consider the action of ending the generation process at a particular state with a transitional
probability. Formally, this is usually accomplished with a function which maps states (not transitions) to probability.
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FIGURE 3.9: M represents a family of distributions with four parameters. M′ represents a particular
distribution in this family.

The statistical model is given by the structure of the dfa and the transitions to be estimated
are the parameters of the model. This problem has a solution under the learning criterion known as
the Maximum Likelihood Estimate (mle).

To explain the mle criterion, it is necessary to first define the likelihood of a sample S

generated by a distribution D. Let D(w) be the probability that D generates w. If S = 〈w1, . . . wn〉
then the likelihood of S given D is defined as

LD(S) =
∏
w∈S

D(w).

Note that S is not a set, but a sequence, so the same word can occur multiple times in S (and
thus would occur multiple times in the product). The product above reflects the assumption that
S is independent and identically distributed (i.i.d.). Therefore, an element in the sequence S is
independent of the ones that come before and after it.

Given a sample of data S, the mle of S is the distribution DA ∈ D that maximizes the
likelihood of the data S with respect to the D. In other words, mle assigns a greater likelihood
to S than every other distribution in D.

The mle learning criterion can then be stated as follows. A learning algorithm A learns a
class of distributions D ifdef , for all D belonging to D, and for any finite sample of data S generated
by D, the grammar G output by A(S) defines a distribution DG, which is the mle with respect to D.

One of the reasons the mle criterion is important follows from thinking of the input sample
S as it becomes longer and longer and approaches an infinite sequence of words generated by the
target distribution. For any ε > 0, there is a sample size N such that for all S where |S| ≥ N , the
difference between the mle of S with respect to D and the true distribution D ∈ D is within ε.
This property is called consistency in the statistical literature. In other words, we are guaranteed, as
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FIGURE 3.10: The figure on the left indicates the count of the parse of S = 〈bbc〉 through M and the figure
on the right indicates the probabilities obtained after normalization.

the sample size grows, to get arbitrarily close to the true distribution. The difference between two
distributions can be measured in different ways, but the above result is true for any of these ways.10

For any dfa M, a learning algorithm for DM which satisfies the mle is known. We do not
know the origins of the following theorem, but it is not difficult to prove.11 For modern treatments,
see Vidal et al. [2005] and de la Higuera [2010].

Theorem 3.3 For a sample S and deterministic finite-state acceptor M, let algorithm A count the
parse of S through M and normalize at each state. A is a learning algorithm for DM which satisfies
the mle.

To count the parse of S through Mmeans the following. Initialize the count of each transition,
and the count of ending at each state to zero. Then, for each word w ∈ S, follow the path of w in M
and add one to each transition traversed in this path. When a word ends in a state, add one to that
count as well. Since w was generated by a distribution in DM and since M is deterministic, there is
exactly one such path. In the statistical literature, this kind of learning process is called the relative
frequency estimator .

Figure 3.10 illustrates the learning procedure of DM for S = 〈bbc〉. According to Theo-
rem 3.3, the pfa on the right in Figure 3.10 satisfies the mle criterion: the likelihood it assigns to
S = 〈bbc〉 is greater than the likelihood every other distribution in DM assigns to S.

N-gram models are widely used in computational linguistics. These are in fact strictly k-local
distributions. Figure 3.11 shows the structure of a bi-gram model where the alphabet is {a , b, c}.
Such a model has 16 transitional probabilities, given by associating probabilities to each transition
and to ending at each state. These are the 16 parameters of a bi-gram model for this alphabet.

10. de la Higuera [2010] and Clark and Lappin [2011] contain good discussions of different ways measures to measure the
distance between distributions.

11. A typical proof of this theorem solves a system of partial differential equations.
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FIGURE 3.11: The structure of a bi-gram model.

TABLE 3.4: Words in Samala with sibilant sounds [ʃ, S]

1. [ʃtojonowonowaʃ] “it stood upright” [Applegate 1972, p. 72]
2. [kʃ�p�twaʃ] “I made acorn mush” [Applegate 1972, p. 119]
3. [suslas�q] “he presses it tight” [Applegate 1972, p. 119]
4. [swashisin] “the terrain is rugged” [Applegate 1972, p. 122]

Leaving aside the important problem of smoothing [Jurafsky and Martin 2008, Ch. 4], training a
bi-gram model proceeds exactly per Theorem 3.3.

It is well known that natural language contains long-distance dependencies, both in syntax
[Chomsky 1956] and in phonology [Odden 1994, Rose and Walker 2004, Hansson 2010, Nevins
2010]. For any n, these dependencies can extend beyond n symbols, and so n-gram models are unable
to express (or model) them.

Here is an example of an unbounded long-distance dependency from Samala,12 a Chumash
language spoken in an area near Santa Barbara, California [Applegate 1972, 2007]. In this language,
there is a long-distance dependency among sibilant sounds. Sibilants are sounds like [ʃ, s], and in
Samala there are words containing sounds like [ʃ] and words containing sounds like [s], but no words
containing both [ʃ, s]. Well-formed words only draw from one group of these sounds or the other
and never from both. Some Samala words are shown in Table 3.4. However, there are no words
which are normally pronounced like those shown in Table 3.5.

This kind of long-distance dependency can be modeled with strictly piecewise languages
[Heinz 2010, Rogers et al. 2010, 2013]. These are a subclass of the regular languages similar to strictly

12. This language was formerly called Ineseño Chumash.
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TABLE 3.5: Impossible Samala
words with sibilant sounds [s, ʃ]

1. *[stojonowonowaʃ]
2. *[ʃtojonowonowas]
3. *[koswashiʃin]
4. *[koʃwashisin]

local languages, except they are based on subsequences, not substrings. A word u is a subsequence of
another word w the symbols in u occur in the same order in w (but not necessarily contiguously).13

With respect to Samala, this means that words like *[stojonowonowaʃʃʃ] and *[ʃʃʃtojonowonowas] are
ill-formed because the subsequences sʃʃʃ and ʃʃʃs, which these words contain, are ill-formed.14

The strictly piecewise languages have several interesting characterizations in terms of formal
language theory, automata theory, model theory [Rogers et al. 2010, 2013], and the algebraic theory
of automata [Fu et al. 2011]. Like strictly local languages, if there is an upper bound k on the length
of the sequence, the class is also provably efficiently learnable in interesting ways [Heinz et al. 2012b,
Heinz and Rogers 2013].

Heinz and Rogers [2010] defined strictly piecewise distributions and present an algorithm
for learning the mle of this class. They represent the class with multiple machines (what Heinz
and Rogers [2013] call a “factored” representation). The distribution itself is then provided by a
variant of the product operation which calculates the co-emission probability [Vidal et al. 2005].
The algorithm finds the mle of the class of distributions represented by each individual factor per
Theorem 3.3, and then applies the product operation.

The results in Table 3.6 show the parameters obtained when the algorithm is fed a training
corpus of 4800 words from a dictionary of Samala. The results mean *[stojonowonowaʃʃʃ] would be
orders of magnitude less likely than [ʃʃʃtojonowonowaʃʃʃ] because it contains the [sʃ] subsequence.

This example, and the one before it, are examples of subregular classes of distributions, which
can be represented with a single automaton as in the case of the strictly k-local languages, or as a
list of automata which are combined by a special product operation, as in the case of the strictly
k-piecewise languages. What they have in common is that the structure of the class can be fixed
to these automata-theoretic representations. Consequently, learning distributions based on these

13. Formal definitions are given in Section 1.6. The language �∗u1�
∗u2 . . . �∗un�

∗ is called the shuffle ideal of u.

14. There are languages like Samala except only one of the subsequences {sʃʃʃ, ʃʃʃs} is forbidden. See Heinz [2010] for
discussion.
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TABLE 3.6: SP2 probabilities of a sibilant occurring some-
time after another one (collapsing laryngeal distinctions).
P(x | y <) means the probability of x given y occuring
anywhere before it in the string.

x

P(x | y <) s �ts ʃ �tʃ

s 0.0325 0.0051 0.0013 0.0002
�ts 0.0212 0.0114 0.0008 0.

y
ʃ 0.0011 0. 0.067 0.0359
�tʃ 0.0006 0. 0.0458 0.0314

classes can be reduced to the problem of the estimating the values of the parameters of the model,
which are expressed in the automata as the transitional probabilities. Theorem 3.3 is an important
result allowing this to happen.

This section has focused on learning stochastic languages where the underlying structure is
fixed with a single dfa (as is the case for stochastic strictly k-local languages, also called n-gram
models), or is fixed with a list of dfa (as is the case for stochastic strictly k-piecewise languages)
under the mle learning criterion. Other types of learning criteria, and other types of estimators
exist, which can also be profitably studied when the structure of the is known and fixed a priori.
Chapter 2 already discussed the pac-learning criteria. Bayes estimators and the maximum a posteriori
estimator are also widely used in computational linguistics and natural language processing [Geman
and Johnson 2004].

So far this chapter has motivated the strictly local and strictly piecewise languages from
studies of natural language phonotactics. More generally, it has been hypothesized that all segmental
phonotactic patterns in natural languages can be modeled with strictly local and strictly piecewise
languages (and by extension, distributions) [Heinz 2010]. (See Heinz et al. [2011] for a slightly
weaker hypothesis.)

3.9.3 STRUCTURE OF THE CLASS IS DETERMINISTIC
BUT NOT KNOWN A PRIORI

There are algorithms with theoretical guarantees for larger classes of regular distributions. In
particular, the class of regular deterministic stochastic languages is identifiable in the limit with
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probability one [de la Higuera and Thollard 2000] and are learnable in modified-pac setting [Clark
and Thollard 2004].

In both cases, the algorithms presented employ state-merging methods and build on prior
work, notably the algorithm alergia [Carrasco and Oncina 1994], which is the first approach
guaranteed to learn the structure underlying any regular deterministic stochastic language (rdsl).
In this section, we choose to describe alergia [Carrasco and Oncina 1994, 1999], because of its
similarity to rpni and ostia.

For non-stochastic regular languages, we already emphasized the importance of the Myhill–
Nerode theorem. A similar theorem exists for regular deterministic stochastic languages [Carrasco
and Oncina 1999, Vidal et al. 2005]. Each rdsl has a canonical representation in terms of a
probabilistic deterministic finite-state acceptor (dpfa). Just as each state q in the tail canoni-
cal acceptor for a regular language corresponds to a regular language, which is the set of good
tails for each string w that leads to q from the initial state, each state in the canonical dpfa
for a rdsl corresponds to a rdsl, which represents the residual for each string w that leads
to q from the initial state with a non-zero probability. In this case, the residual is a stochastic
language.

Consequently, a state-merging algorithm needs only to decide correctly whether two states
in a prefix tree construction have the same stochastic set of good tails. The general form of the
algorithm is given by rlips [Carrasco and Oncina 1994], which is an acronym for Regular Language
Inference from Probabilistic Samples. A statistical test can be used to decide if two finite samples
are drawn from the same distribution or not (and hence belong to the same stochastic set of tails).
Since a number of different tests can be employed, rlips represents a family of algorithms, of
which alergia is one. alergia uses the Hoeffding statistical test and Carrasco and Oncina [1999]
and de la Higuera and Thollard [2000] showed that this method provably converges to the target
dpfa with probability one. In other words, alergia successfully learns both the structure and the
transitional probabilities, and it does so with polynomial time and data.

Clark and Thollard [2004] also obtained a theoretical learning result for the class of distri-
butions definable from dpfa, this time in a variant of the Probably Approximately Correct (pac)
framework. Kearns and Vazirani [1994] established that the class of distributions describable with
dpfa is not pac-learnable. Clark and Thollard combine the state-merging insights from alergia
with the insights of Ron et al. [1995], who developed a pac-like learning algorithm for a class of
acyclic dpfa. As before, the idea is to only merge states in a prefix tree if the prefixes share the same
stochastic set of tails. Instead of using the Hoeffding test, however, Clark and Thollard (follow-
ing Ron et al.) adopt the Kullback–Leibler Divergence as a way to measure the error between two
distributions (see Section 2.2.6). Because this introduces additional parameters into the learning
framework, they refer to their learning criteria as kl-pac.
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de la Higuera [2010] referred to the Clark and Thollard algorithm as dsai for “Distinguishing
Strings Automata Inference.” This is because crucial to their algorithm and its analysis is the notion
of “distinguishing strings” which reveal whether two states have the same stochastic tail set or not.
Specifically, Clark and Thollard considered some μ > 0 and define for every pair of states in a dpfa,
a string w to be “μ-distinguishing” if the difference between the probability assigned to w in the
stochastic tail set of one prefix and the probability assigned to w in the stochastic tail set of the other
prefix is greater than μ.

Together these results show that it is possible to efficiently learn, in certain senses, both the
structure and the transitional probabilities of the dpfa that model regular deterministic stochastic
languages.

3.9.4 STRUCTURE OF THE CLASS IS NON-DETERMINISTIC
AND NOT KNOWN A PRIORI

Methods for learning the class of non-deterministic regular stochastic languages face hurdles. Abe
and Warmuth [1992] established that learning the class of non-deterministic regular stochastic
languages is hard.

One clue to why this is the case might come from that the fact that although this class
of distributions can be modeled with both hmms and pfa, there are no canonical forms for the
distributions in this class. Thus, unlike the classes discussed above, it is not possible for the global
structure of the underlying grammar to be determined from a series of local decisions in a prefix
tree. Whether or not two prefixes correspond to the same state in the underlying representation is
independent from whether they share the same stochastic set of tails or not.

Another related reason for the difficulty is the credit problem. When the structure is known
and deterministic, there is exactly one parse for each string in the sample and so it is clear where
and how to adjust the probabilities in the transitions of the automata. However, when the unknown
structure is non-deterministic, there are potentially many distinct parses of a string in the sample. In
this case, it is not clear which transitions in the underlying automata are responsible and how their
probabilities should be adjusted to maximize the likelihood of the sample.

Nonetheless, a number of powerful statistical methods have been, and continue to be, de-
veloped. These methods do not have the same theoretical guarantees as the algorithms mentioned
above. We briefly mention two approaches.

The Expectation-Maximization algorithm offers one way to update probabilities that guaran-
tees reaching a local optimum in the likelihood space. The idea is to first make an initial estimation
of the number of states of a fully connected pfa and the weights on the transitions and then iterate
through two steps: (1) estimating the counts obtained from the sample using the weights (expecta-
tion step) and (2) adjusting them in a way that increases the likelihood of the sample (maximization
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step). This approach is implemented via a dynamic programming approach known as the Baum–
Welch method. Readers are referred to Jurafsky and Martin [2008] and de la Higuera [2010] for
details.

A second, more recent approach is called spectral learning, which decomposes the target
function according to its Hankel matrix, a concept borrowed from algebraic theory. For any stochastic
distribution D describable with a pfa over �∗, the rows and columns of its Hankel matrix correspond
to prefixes and suffixes, respectively, and values of cell (u, v) are assigned D(uv). While this
representation of D is redundant, it affords several interesting properties. The infinitely sized Hankel
matrix can be partitioned into submatrices with particular properties; the number of blocks (called
rank) of a particular partition relates to the size of the minimal pfa for D. Thus, spectral learning of
an unknown distribution D comes down to identifying the right partition given a sample and then
computing a pfa for D. Provided the rank of D is known, this is possible because the finite basis of
a particular partition of the Hankel matrix ensures that only finitely many strings need to be seen
in order to determine the entire Hankel matrix for D. Readers are referred to Hsu et al. [2012] and
Balle et al. [2014a] for details.

The Probabilistic Automata learning Competition (pautomac) was run in 2012 as part
of the biannual International Conference of Grammatical Inference. It was the first grammatical
inference challenge that allowed the comparison between methods and algorithms designed to learn
deterministic and non-deterministic regular stochastic languages. Challengers were provided with
artificial data and tried to estimate the probabilities of unseen strings generated by the underlying
probabilistic models. Results were evaluated by calculating perplexity; see Verwer et al. [2014] for
details.

Perhaps one of the most striking results of the competition was put by the organizers of the
competition this way: “Of course, we cannot be sure [. . . ], but it seems to indicate that it is best to
learn a non-deterministic model when the data is drawn from a non-deterministic distribution, and
that it is best to learn a deterministic model when the data is drawn from a deterministic distribution”
[Verwer et al. 2014, p. 143]. Obviously then, if we are interested in modeling natural language with
stochastic grammars, we would like to know whether the underlying grammars are deterministic or
non-deterministic.

3.10 SUMMARY
This chapter studied the problems of learning classes of regular languages, regular transductions, and
regular stochastic languages. Different types of state-merging algorithms were shown to be able to
learn different classes of these languages. The principles behind state-merging can be summarized
as follows.
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. Regular languages, subsequential transducers, and deterministic regular stochastic languages
have canonical forms.

. Each state q in the canonical form itself represents a residual . For regular languages, q

represents the set of good tails of strings w which lead to q. These are the set of strings
which would change the state from q to a final state. For subsequential transductions and
stochastic languages, the residuals are characterized similarly. In these cases the residuals are
subsequential functions in the former case and stochastic languages in the latter.

. Tree representations of the sample are finite representations of the observed data. Prefix (suffix)
trees distinguish each prefix (suffix) in the sample with its own state and hence its own residual.

. Criteria are used to decide when different states have the same residuals. The corresponding
states are merged.

While the class of regular languages cannot be identified in the limit from positive data alone,
certain subclasses of regular languages can be so identified. Rogers and Pullum [2011] and Rogers
et al. [2013] discuss several natural subregular classes, some of which appear to characterize certain
natural language phenomenon well.

The state-merging algorithms effectively instantiate (a priori given) inference rules. For
instance, if two prefixes share a common k-long suffix then merging the corresponding states in the
prefix tree will result in learning strictly (k + 1)-local languages. The bias selection that is undertaken
in these cases can be said to be quite strong. Similarly, in the case of stochastic languages, if the
deterministic structure of an underlying acceptor is known, the bias selection is very strong and
learning the transitional probabilities is straightforward.

The class of regular languages can efficiently identified in the limit from positive and negative
data by the algorithm rpni. rpni merges pairs of states provided the result is consistent with the
sample of positive and negative it is given.

Similarly, the class of subsequential transductions can be efficiently identified in the limit from
positive examples by ostia. Because subsequential transductions are functional, a positive example
also provides implicit negative evidence. Consequently, ostia is very similar in spirit to rpni.

Similarly again, the class of regular deterministic stochastic languages can be efficiently iden-
tified in the limit from positive examples by alergia. Drawing a stochastic sample also allows for
implicit negative evidence to become available. Like regular languages and subsequential transduc-
tions, regular deterministic stochastic languages admit canonical forms. alergia merges states in
the prefix tree provided that the residuals of those prefixes are considered to be equivalent. There are
different tests available for this, but de la Higuera and Thollard [2000] showed that the Hoeffding
test used by alergia is theoretically sound and leads to convergence in the limit with probability 1.
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The bias selection in these last three cases is also strong (deterministic regular grammars), but
is considerably weaker than trying to learn subclasses of regular languages, functions, or stochastic
regular languages. The development of algorithms that provably and efficiently learn these classes
under the criteria provided are some of the key achievements of the field of grammatical inference.
This is why de la Higuera [2010] presented detailed treatments of these algorithms with example
runs. Readers are referred to that book for details about these algorithms that are not covered here.

As mentioned, targeting subclasses of the subsequential functions or regular deterministic
stochastic languages strengthens the bias selection. Subclasses of subsequential functions have only
recently been studied and appear to be learnable under stronger, more efficient learning criteria
[Chandlee et al. 2014, Jardine et al. 2014]. On the other hand, subclasses of deterministic stochastic
languages have been studied previously, notably n-gram models, which are the stochastic version of
strictly k-local languages. However, many others remain to be studied carefully.

Furthermore, weakening the bias selection from “deterministic regular” to “non-deterministic
regular” seems to lead to trouble. For instance, the theoretical guarantees for learning the larger class
of non-deterministic regular stochastic languages are much weaker. In general, the true structure of
the underlying automaton is not guaranteed to be discovered with these methods. Other methods
which are guaranteed to identify the grammar in the limit with probability 1, such as the enumerative
methods given by Angluin [1988a], are unfortunately very inefficient. Results for learning the full
class of regular relations—in contrast to the subsequential functions—are also strikingly absent.

Many tasks in computational linguistics use methods that are among the most successful for
learning non-deterministic regular stochastic languages. However, to our knowledge the algorithms
which are among the most successful for learning deterministic regular stochastic languages (rlips,
alergia, dsai) have not been explored. The results of the recent pautomac competition [Verwer
et al. 2014] suggest that if the underlying natural language phenomenon can be described by
deterministic regular stochastic languages, then these would be fruitful algorithms for computational
linguists to apply.
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C H A P T E R 4

Learning Non-Regular Languages

Research in the field of grammatical inference deals with learnability of languages. In general, the
setup is as follows. Given a family of languages, one specific language is selected and a set of sample
strings is extracted. The learner now has to identify the language, from the family of languages, that
was used to generate the sample strings.

Formal grammatical inference deals with the question whether specific families of languages
as a whole can be identified efficiently under certain conditions. This is shown by providing formal,
mathematical proofs of learnability.

While formal grammatical inference provides us with proofs of learnability, there are situations
in which it is unclear what family of languages a specific grammar belongs to. For instance, consider
the task of learning natural language syntax. We do not have a formal representation of the family of
(formal) languages that corresponds to the family of natural languages. However, approximations of
such families of languages have been made. For instance, syntax may be approximated using context-
free grammars. This leads to functional descriptions, but there are valid structures that cannot be
described using a context-free grammar, and context-free grammars may describe constructions that
do not occur in natural languages.1

In contrast to formal grammatical inference, empirical grammatical inference approaches the
problem of learnability of languages from a different starting point. Whereas formal grammatical in-
ference focuses directly on families of languages, empirical grammatical inference deals with learning
specific languages. Given a set of sample strings from a specific language, empirical grammatical in-
ference aims to learn the underlying language. Additionally, if identification of the exact underlying
language is not possible, an approximation should be given.

Once an empirical grammatical inference system has been developed that can learn from
a set of “interesting” languages, such as natural language syntax, we can analyze the bias of the
algorithm used in the system. This bias may lead to a formal description of the family of languages the
system can practically learn. Given this information, we have evidence that this family of languages

1. The current consensus is that natural language syntax requires at least some descriptive power of context-free and with
high likelihood (mildly) context-sensitive languages [Huybrechts 1984, Shieber 1985].
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is learnable. A follow-up step may be to formulate a formal proof that this family of languages is
indeed efficiently learnable.

Empirical grammatical inference systems can be roughly divided into three groups. This
division is based on which aspects of the model are selected, or fixed, beforehand. Essentially, these
groups form a sliding scale based on the amount of flexibility in the model.

First, the potential structures may be fixed completely, which means that the system should
only learn the parameters in the model that belong to each structure. An example of a model that has
fixed, predefined structures is an n-gram model. In n-gram models, the structure describes substrings
of n symbols that can be combined to indicate which longer strings are found in the language.

Second, we can identify models that have fixed structures, similar to that of the first type
of model, but the selection of the structures is more fine-grained. For instance, the structures may
be based on the structure identified from (sub)trees or context-free grammar rules that have been
extracted from a treebank (this requires the input to contain some information on possible structures).
Once extracted, the structures remain fixed and the model can be adjusted by setting the parameters
for each of the structures.

Finally, there are models that allow for the dynamic selection or creation of structures. The
structures in these models are not hard-coded or predefined using external (linguistic) knowledge
as is the case when the structures are extracted from a treebank. The structures can be added or
removed from the model as the system sees fit. Additionally, the model may need to set parameters
for each of the structures.

In the remainder of this chapter, we will provide several examples of systems that can be found
on the more flexible end of the spectrum of grammatical inference models as just described. We will
first introduce a principle that allows identifying regularities in the training strings. The systems
we describe in this chapter are all based on this principle; some systems explicitly start from the
principle, whereas others use the notion more implicitly.

4.1 SUBSTITUTABILITY
Many empirical grammatical inference systems that focus on learning context-free grammars build
on a common underlying principle. However, the way the underlying principle is applied or incor-
porated in the learning systems is different for each system.

4.1.1 IDENTIFYING STRUCTURE
Consider the task of learning syntactic structures in natural language sentences. The system receives a
set of example sentences and should output structure. A whole range of questions arises. For instance,
what should this structure look like? On what basis should the structure be assigned? Should the
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()

If  is a non-terminal, can be replaced by and vice versa in any context.

FIGURE 4.1: Substitutability in tree structures.

learned structure be what linguists would assign or should the structure at least be linguistically
motivated?

If we assume that the structure assigned to the sentences should correspond to the linguistic
notion of constituents2 then we may be able to use tests for constituency to identify the structure in
the sentences. There are several tests that can be used to test for constituency. Some of these tests are
language specific. For instance, we may use the fact that several Germanic languages have a verb-
second (V2) word order [Santorini and Kroch 2007], which means that the main verb can be found
in the second position of the sentence. In this case, we may identify one or more words before the
main verb, which, given the fact that the language is V2, will necessarily be a constituent.

Language-independent tests for constituency are hard to find. The most well known is that
of substitutability. The underlying idea behind this test is that elements of the same type are
substitutable. In other words, if we know that a particular group of words forms a constituent of
a particular type, we may replace this constituent by any other constituent of the same type. For
instance, if we know that in the sentence What is a family fare the phrase a family fare is a noun phrase,
substitutability means that we can replace this phrase by any other noun phrase and end up with a
syntactically correct sentence. If we also know that the payload of an African Swallow is a noun phrase,
this means that What is the payload of an African Swallow is also syntactically correct.

The idea of substitutability is visualized in Figure 4.1. The type of the constituent (e.g., noun,
verb phrase, etc.), indicated by the small circle, can be expanded in (at least) two ways, depicted by
the triangles. The triangles represent subtrees with the words of the constituent as their yield. If one
of the subtrees headed by the constituent type is found in a particular context, this subtree can be
replaced by another subtree that is headed by the same type.

2. A constituent consists of one or more words that function as a single unit (in the context of a sentence).
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88 4. LEARNING NON-REGULAR LANGUAGES

Note that the notion of type in this context may be slightly different from what linguists typi-
cally describe using syntactic types. For example, in English, nouns can be preceded by determiners.
However, only nouns beginning with a vowel can follow the determiner “an.” For substitutability
to be able to describe this phenomenon, information on the first vowel of the word should be en-
coded using the type, which is phonological information and arguably should not be described using
syntactic types.

To formalize the concept of substitutability, we use the notion of substring. Alternative
definitions can be found in van Zaanen [2002a].

Definition 4.1 (Substitutability) Substrings u and v are substitutable for each other in L if given
any strings l and r in �∗, lur ∈ L ⇔ lvr ∈ L

The above definition has led to theoretical work on substitutability, as for example Clark and
Eyraud [2007], Clark and Yoshinaka [2014], and Scicluna and de la Higuera [2014a].

The concept of substitutability is not unlike the Nerode equivalence relation which played
a central role in Chapter 3. As with Nerode equivalence, substitutability allows one to develop
inference rules similar to the ones discussed in Section 3.6. There it was asked: When do we know
strings u and v have the same good tails? Here, it is asked: When do we know strings u and v are
substitutable?

4.1.2 LEARNING USING SUBSTITUTABILITY
The notion of substitutability does not automatically lead to systems that learn languages. The fact
that constituents of the same type are substitutable only indicates the usefulness of the concept of
constituency. If one knows that certain words in a sentence form a constituent of a particular type,
the words may be replaced by another constituent of the same type.

Identifying constituents can be attempted by reversing the idea of substitutability. We know
that constituents of the same type can be replaced, so if we can find evidence of the replacement
of constituents (for instance, in several sentences), we may assume that the parts of the sentences
occurring in a similar context are possibly constituents of the same type.

If we have evidence that the sentence a b c d has b c as a constituent of type X, we know there
is a context a X d where X can be replaced by any constituent of type X. If we can then find other
sentences that have the same context, the words on the X position in that context may indeed form
a constituent of type X. For instance, if we find the sentences What is a family fare and What is the

payload of an African Swallow, we may identify What is to be the context of constituents a family fare and
the payload of an African Swallow, which are both of the same type (noun phrases in this case).

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮
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4.2 EMPIRICAL APPROACHES
In the last several years, a collection of empirical grammatical inference systems has been developed.
In this section, we will discuss the best-known, context-free grammar learning systems. All these
systems rely on some application of the notion of substitutability. Even though we try to provide a
rather complete overview, there exist empirical grammatical inference systems that focus on specific
properties, such as cognitive plausibility, and not simply on learning the best fitting grammar given
a collection of strings. These specialized systems are not explicitly described here.

4.2.1 EXPANDING AND REDUCING APPROACHES
Even though all empirical grammatical inference systems that learn context-free grammars rely,
implicitly or explicitly, on the idea of substitutability, we can identify two distinct approaches
to how the complete search space is traversed. The first approach starts from the sample strings
and generalizes the grammar by identifying regularities within the strings. We call this approach
expanding as the grammar expands from a tight fit of the training data to more general grammars
that capture a larger language (meaning that more strings are part of the language, even though the
grammar may be smaller).

The second approach is called reducing. These systems start with the assumption that all
strings are possible in the language. Given the valid strings in the training data, the collection of
valid strings is reduced.

These two approaches are discussed in detail by van Zaanen and van Noord [2012] and are
related to comparable approaches in the context of learning finite-state machines. The expanding
approach corresponds to the model of the state-merging approach, whereas the reducing approach
coincides with the model of the state-splitting approach.

4.2.2 SUPERVISED AND UNSUPERVISED APPROACHES
Empirical grammatical inference systems may also be grouped based on the information contained
in the input. There are many possible values for this parameter.

To illustrate the parameter that indicates the amount of information, we may consider two
extremes, even though, typically, these extremes do not occur in practice. On one end of the spectrum,
no information whatsoever about the language is given. In this case it is extremely hard to learn, as no
assumptions can be made based on the data. On the other end of the spectrum, the full information
about the language is provided. This means that no learning is required at all, as everything is already
known.

Typically, learners of non-regular languages receive a set of strings that are sampled from the
language to be learned. This holds for all systems described in Section 4.2.4. However, alternative
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90 4. LEARNING NON-REGULAR LANGUAGES

approaches receive other representations of the strings from the language. Examples of such repre-
sentations include unlabeled tree structures, which are also called skeletons [de la Higuera 2010],
partial tree structures [Sakakibara and Muramatsu 2000], or full tree structures [Charniak 1993].
We will concentrate on learners that receive data from a plain string presentation.

4.2.3 WORD-BASED AND POS-BASED APPROACHES
From a natural language point of view, a plain string presentation may mean different things. Em-
pirical grammatical inference systems that work on real-world data, different linguistic annotation
layers may serve as “plain strings.” For instance, strings of morphemes, written words, or part-of-
speech (pos) tags3 as symbols in the strings lead to representations of natural language sentences. In
this case, the learned grammars represent syntactic structures. Using letters or phonemes as symbols
allows for the learning of morphological structure in natural language words.

The systems described below have been developed to deal with learning natural language syn-
tax. Some systems start with tokenized (written) language in the form of words or tokens, and others
are based on strings of pos tags. The major difference between these two presentations is the size of
the vocabulary. Presentations consisting of strings of tokens may lead to very large vocabularies. For
instance, the Google Web 1T 5-gram Version 1 corpus4 is based on 1,024,908,267,229 words of
running text. This leads to a vocabulary consisting of 13,588,391 unique words (not counting words
that occur less than 200 times). In contrast, presentations resulting in strings of pos tags typically
have much smaller vocabularies. The Brown tag set consists of 87 unique tags [Francis and Kučera
1982], the C5 tag set used in the claws project has 61 tags [Garside et al. 1997], and the Penn
Treebank tag set has 45 tags [Marcus et al. 1993]. A more fine-grained tag set is, for instance, the tag
set used for the Dutch D-Coi corpus [van Eynde 2005]. This tag set consists of 320 tags (grouped
in 12 main tag groups). This is still orders of magnitude smaller than the size of the vocabulary of
words.

4.2.4 DESCRIPTION OF EMPIRICAL SYSTEMS
In this section, several empirical grammatical inference systems are described in some detail. All of
these aim to learn context-free grammars based on unstructured strings of either tokens (words) or
pos tags. Whereas the actual implementation is different in each system, the underlying approach
is comparable. Each system effectively makes use of the notion of substitutability. Some systems do
this explicitly, whereas others rely on the statistics of certain symbols occurring in similar contexts.

3. Obviously, these representations need to be learned as well before they can be used. For instance, phoneme, morpheme, and
word boundaries will need to be identified from the sound signal, and pos tags already describe some syntactic information.

4. http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
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4.2 Empirical Approaches 91

TABLE 4.1: Matrix for John walks, John sees Mary and Mary walks

(.) walks John (.) (.) sees Mary . . . contexts

John x x . . .
walks x . . .
Mary x . . .
sees Mary x . . .
...

...
...

...
. . .

expressions

EMILE
emile is an empirical grammatical inference system that is based on the explicit notion of substi-
tutability. This system originates from research in the area of formal grammatical inference. Adriaans
[1992] showed that shallow context-free grammars (in the shape of categorial grammars) are pac
learnable under simple distributions. Based on the theoretical research, a practical implementation
has been built [Vervoort 2000, Adriaans and Vervoort 2002].

The system identifies context-free grammars that are context-separable and expression-
separable. A grammar is context- or expression-separable if for each non-terminal in the grammar
respectively a characteristic context or expression can be found. A context is characteristic, if it
only appears with expressions of one particular type and an expression is characteristic if it only
occurs within a context of a particular type. These grammars correspond to the family of shallow
context-free grammars used in the formal proofs [Vervoort 2000].

emile starts with a collection of plain sentences (i.e., strings of words). These sentences are
analyzed to identify possible expressions and contexts. All combinations of contexts and expressions
are stored in a matrix containing the corresponding co-occurrence information. A co-occurrence
matrix has one dimension with possible contexts and another dimension with possible expressions.
Table 4.1 is part of such a matrix given example sentences John walks, John sees Mary, and Mary walks.

Analyzing the matrix, emile can identify characteristic expressions and context by comparing
either entries in the rows or in the columns. This process is called one-dimensional clustering. In the
case of the matrix of Table 4.1, it finds the cluster [John (.), {walks, sees Mary}], which is a characteristic
context, as its expressions only occur in the same contexts. More complex types of clustering can be
defined, such as two-dimensional clustering, which also takes contexts with ambiguous types into
account [Vervoort 2000].
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92 4. LEARNING NON-REGULAR LANGUAGES

Given the characteristic contexts and expressions, grammar rules are created. For each ex-
pression e belonging to context T , a grammar rule T → e is introduced. Also, all occurrences of
expressions e in the grammar are replaced by non-terminal T . A start symbol S is introduced and a
grammar is created that makes sure all sentential contexts are reachable: S → T .

Once the grammar rules are created, the same process is repeated. Due to the abstraction
over the expressions in the grammar rules, new characteristic contexts and expressions can be
identified, leading to deeper hierarchical grammar rules. For instance, if John and Mary are identified
as expressions of type E, all occurrences of John and Mary are replaced by E. This means that sentences
such as John sees Mary and Mary slaps John, become E sees E and E slaps E. In this situation,
expressions sees and slaps share the same context, which was not the case in the original sentences.
Based on this information, the expressions sees and slaps also receive the same type, which may
again lead to further generalizations.

Originally, emile has been designed to show formal learnability of the family of shallow
context-free languages. As such, the system is designed as an algorithm with known, formal
properties. This does not necessarily mean that the algorithm leads to a practical system that can
learn languages based on real-world data. The practical implementation of emile [Adriaans and
Vervoort 2002] has a wide range of parameters; for instance, to restrict the size of the matrix or the
number of comparisons made to identify the clusters. The choice of the settings of the parameters
has an impact on the results of the system as well as the practical runtime and memory requirements
of the system.

Alignment-Based Learning
Another system based on the idea of substitutability is Alignment-Based Learning (abl) [van
Zaanen 2000a, 2000b, 2000c, 2002a, 2003]. This system is presented as a framework consist-
ing of a pipeline of phases. Based on the framework, a working system corresponds to selecting
a specific module for each of the phases. A practically usable system is available [van Zaanen
2002b].5

As illustrated in Figure 4.2, abl consists of two main phases. An optional third phase
may be added. The first phase is called alignment learning, which generates a hypothesis space
given a collection of strings. (In the implementation, an intermediate phase, called clustering, can
be distinguished. This phase groups common non-terminals within the hypothesis space). The
hypothesis space serves as the input to the second phase, selection learning. This phase selects the best
constituents from the hypothesis space, which leads to a structured version of the input collection

5. http://ilk.uvt.nl/menno/research/software/abl

http://ilk.uvt.nl/menno/research/software/abl
wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮



4.2 Empirical Approaches 93

Alignment
learning

Selection
learning

Grammar
extraction

Hypothesis
space

Structured
corpus

Grammar

Hypothesis
space

Structured
corpus

Corpus

FIGURE 4.2: Schematic overview of phases in abl.

I need (X1
a dinner during the flight)X1

I need (X1
to return on Tuesday)X1

FIGURE 4.3: Alignment of two sentences and the identification of hypotheses.

of strings. If required, a third phase, called grammar extraction, may be used to extract an explicit
grammar from the structured output.

The system is designed to work on plain sentences, or strings of words. The alignment learning
phase searches for regularities in the input. Each sentence in the training data is compared against
each other sentence. Pairs of sentences are aligned, which indicates equal and unequal parts of the
sentences. This is illustrated in Figure 4.3. According to the idea of substitutability, the unequal parts
of the sentences are considered possible constituents, which are called hypotheses. Each sentence has
an associated hypothesis space that contains the hypotheses for that sentence.

Each sentence is compared against all other sentences in the collection. For each of the
comparisons, the alignment is done on the plain sentences. The hypotheses in the hypothesis space
are not taken into account during the alignment. If hypotheses are identified, these are added to the
already existing hypotheses in the hypothesis space.

The alignment of sentences can be done in different ways, each leading to a different alignment
learning “module.” Currently, modules using edit distance [Wagner and Fischer 1974] or suffix trees
[Ukkonen 1995, Geertzen 2003, Geertzen and van Zaanen 2004] have been implemented. The edit
distance–based modules align all sentences in pairs, leading to O(|C|2) computation time, with |C|
the number of sentences in the corpus. The edit transcript of pair of sentences is used to identify the
unequal parts (which consist of all edit operations except the match operation).
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As an alternative to the edit distance–based modules, modules that search for words occurring
in multiple sentences using suffix trees [Ukkonen 1995] have been implemented. A suffix tree is built
that contains the entire collection. Branches in the suffix tree indicate positions in sentences that
have the same left-hand side, but differing right-hand sides. Similarly, branches in the prefix tree
(which in this context is the suffix tree from the reversed sentences) indicate positions in sentences
that have the same right-hand side, but differing left-hand sides. Combining the branch points leads
to the identification of equal and unequal parts in the sentences. The algorithms based on the suffix
tree representation of the sentences lead to different results compared to the edit distance–based
modules. The main advantage of using the suffix tree–based modules is that they can handle larger
collections, as the suffix trees can be built in linear time.

Since hypotheses are added to the hypothesis space of a sentence, it may be the case that two
or more hypotheses with the same opening and closing brackets are added separately. The clustering
step makes sure that the non-terminals belonging to different hypotheses that share the same opening
and closing brackets are merged and the different non-terminals are merged throughout the entire
collection.

Adding hypotheses to the hypothesis space without taking the existing hypotheses in the
hypothesis space into account may lead to overlapping hypotheses. Hypotheses overlap if the opening
bracket of hypothesis x is between the opening and closing bracket of hypothesis y, while the closing
bracket of hypothesis x is after the closing bracket of hypothesis y. For instance, in (X1

a (X2
b)X1

c)X2
the hypotheses of type X1 and X2 overlap.

Overlapping hypotheses are unwanted if the underlying grammar is considered context-free.
In that case, the resulting structure after applying the phases should be seen as a tree structure, or
derivation using the learned grammar. Generating sentences based on a context-free grammar leads
to tree structures.

The aim of the selection learning phase is to select constituents (which are already present as
hypotheses in the hypothesis space) in such a way that none of the remaining constituents overlap.

Currently, several selection learning methods have been implemented. Selection learning
modules exist that select constituents chronologically or based on statistics. With the chronological
selection, earlier hypotheses are considered correct, or in other words, if an alignment learning
module tries to add a hypothesis to the hypothesis space that overlaps with an existing hypothesis,
it is not added.

The statistics-based selection learning methods identify the most likely correct hypothesis.
For each of the hypothesis, a probability is computed according to properties of the hypothesis, such
as the number of occurrences of the words contained in the hypothesis. The most likely structure is
then computed using a viterbi-style optimization [Viterbi 1967].
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FIGURE 4.4: Initial adios graph for John sees a cat, John walks, and The dog sees Mary.

ADIOS
A system that borrows ideas from finite-state automata and the notion of substitutability is called
adios (Automatic Distillation of Structure) [Edelman et al. 2004, Solan et al. 2005]. This system
starts by representing the sample sentences from the language as a graph. The graph is compressed,
which resolves non-determinism. Next, adios searches for significant patterns, which correspond
to substitutable parts in the sentences. These structures are considered to be constituents.

During the first phase, a directed graph (similar to a finite-state machine) is built with unique
start and end nodes. For each sample sentence, a path is created. Each unique word in the sentence
is represented using a node. A sentence is represented by connecting nodes with the corresponding
words in the sentence. Each sentence leads to a new path, so edges are not shared between sentences.
Figure 4.4 shows an example of such a graph using the sentences: John sees a cat, John walks, and
The dog sees Mary.

Because nodes are shared between sentences but edges are unique for each path, words and
hence parts of sentences that can be found in several sentences are automatically aligned with
each other. This makes the identification of equal and unequal parts (essential information for
substitutability) easy.

The second phase segments the graph by identifying subpaths that are shared by a significant
number of partially aligned paths. These subpaths correspond to expressions (in a variety of contexts)
which are substitutable. The subpaths are scored using the mex (Motif Extraction) criterion. The
identification of subpaths continues until no more significant paths can be found.

The mex criterion relies on probabilities that measure changes in in- and out-degree of nodes.
The changes in in- and out-degree indicate words on the boundary of substitutable expressions. For
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instance, a node, say, n, with a large in-degree indicates that many paths use node n. If the paths
going out of node n go to many other nodes then that might indicate that node n is the end of a
pattern. The idea is that a collection of paths following the same nodes indicate a subpath, or pattern,
that occurs in a range of contexts. The moment the collection of paths spread out over a number of
nodes, this indicates the end of the pattern.

The computation of the significant patterns is done as follows. First, probabilities are com-
puted that measure the in- and out-degree of nodes. This computation is done separately going from
left to right and right to left (indicated by PR and PL, respectively) to find the start and end points
of significant patterns. We follow the definitions of Kunik et al. [2005].

First, we define probabilities over the out-degree of a node ei:

p(ei) = # paths leaving ei

total # paths

p(ej |ei) = # paths going from ei to ej

total # paths going out of ei

.

The relative probability of the outgoing paths can be extended to longer paths. PR(ei; ej)

indicates the probability of the outgoing paths going from ei to ej :

PR(ei; ej) = p(ej |eiei+1 . . . ej−1) = # paths from ei to ej

# paths from ei to ej−1
.

PR describes the probability of paths going to the right. In the same line, PL can be defined,
which describes similar probabilities, but go from right to left:

PL(ej ; ei) = p(ei|ei+1ei+2 . . . ej) = # paths from ej to ei

# paths from ej to ei+1
.

Essentially, PR and PL are normalized in- and out-degrees. The interesting nodes in the graph
display a drop in probability when moving through the graph. This drop is measured by D, which
describes the relative change of the probability between two nodes:

DR(ei; ej) = PR(ei; ej)

PR(ei; ej−1)

DL(ej ; ei) = PR(ej ; ei)

PR(ej ; ei+1)
.
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FIGURE 4.5: Above, the initial adios graph. Below, the two graphs after rewriting the pattern of nodes w2,
w3, w4 (indicated by the dotted line in the initial graph) as node n1.

To decide when a node may serve as the starting point or ending point of a pattern, a parameter
η is introduced. If DR(ei; ej) < η, ej−1 is used as the end of a pattern. Similarly, if DL(ej ; ei) < η,
ei+1 is used as the begin of a pattern.

A problem with this approach is that the probabilities (and hence the D values) are computed
based on potentially a very small number of paths going through edges. To reduce this problem,
significance values are computed. This allows for an additional setting (α) that indicates a form of
certainty. Typical settings for η and α are 0.9 and 0.01, respectively.

Once a start and end point of a pattern is found, a new node is created that encapsulates the
nodes within the pattern. All paths going through all nodes in the pattern now go through this newly
created node. For instance, in Figure 4.5, if nodes w2, w3, and w4 are found to be a pattern, these are
replaced by a new node n1. Essentially, node n1 is now a hierarchical node, as it contains nodes w2,
w3, and w4. Note that when paths do not go through all nodes of a pattern, these paths are retained
separately. Path 3 is such an example in Figure 4.5.

CCM and DMV
The Constituent-Context Model (ccm) and Dependency Model with Valence (dmv) are two
different models that both focus on different aspects of syntactic structure [Klein 2004, 2005]. By
combining the results of both models, results improve. We will discuss the ccm model first, followed
by dmv and finally, briefly, the combination of the two models.

CCM. ccm [Klein and Manning 2002, 2005] builds on the idea of substitutability. The aim is
to identify expressions, which are called spans in ccm, in contexts. Instead of strict decisions on
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whether spans are constituents (as in emile) or hypotheses (as in abl), ccm assigns a measure of
likelihood to each span. This probability is defined as Pspan(s|t) where s is the span, i.e., a string of
part-of-speech tags, and t either has the value “constituent” or “distituent” indicating whether the
span is a constituent or not.

Similarly to the definition of the probability of a span, ccm defines the probability of a context
c as Pcontext(c|t). In this case, t (which is again either “constituent” or “distituent”) describes whether
the expression contained in the context is a constituent or a distituent.

The probabilities for spans and contexts are used to define the probability of a bracketing B

on a string s, P(s , B). A bracketing corresponds to a tree structure defined over the string. ccm
starts with a uniform distribution Pbin over all bracketings that correspond to binary tree structures.
This probability is defined as

P(s , B) = Pbin(B)P (s|B).

P(s|B) can be expanded as

P(s|B) = �i , j :i≤jPspan(sij |Bij)Pcontext(si−1, sj |Bij),

where sij is the span over the substring of symbols starting at position i and ending, not including, at
position j . The context (si−1, sj ) consists of the symbol before the start of the span (i.e., si−1 which
is before sij ) and the symbol following the span sj . To make sure a context can be defined when
the span starts at the beginning of a string or ends at the end of a string, specific sentence boundary
markers are added at the begin and end of the sentence. Bij has the value “constituent” if the span
over i and j is in the bracketing B and “distituent” otherwise.

Next, the probabilities are re-estimated using the Expectation-Maximization (em) algorithm
[Dempster et al. 1977]. The variables that need to be estimated (�) are the probabilities Pspan(s|t)
and Pcontext(c|t) and also the probability of the bracketing P(B). In ccm, the probability of the
bracketing is not changed. It is set beforehand using the uniform distribution over all binary
bracketings.

The em algorithm consists of two steps. The E step computes the likelihoods of P(B|s , �)

given the current values of the parameters in �. The M step searches for new settings of the
parameters �′ that maximizes �BP(B|s , �) log P(B , s|�′). The em algorithm iterates over these
two steps until the values of the parameters converge.

To start the em process, initial values for P(B|s , �) are needed. Klein and Manning [2005]
indicated that using the uniform distribution over the binary trees has the problem that the trees are
all balanced. To allow unbalanced trees to be identified during the em process, binary trees are build
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Root

FIGURE 4.6: Example dependency parse without terminals, which are visualized as dots.

to the left and right side of a randomly chosen split point. This yields a distribution Psplit, which
has a preference for somewhat unbalanced trees.

DMV. The Dependency Model with Valence (dmv) is an unsupervised dependency parser [Klein
2004]. Instead of a one-to-many mapping between non-terminals (on the left-hand side) and termi-
nals or non-terminals (on the right-hand side) in, for instance, context-free grammars, dependency
models are a one-to-one mapping. Essentially, dependencies describe head-dependent relationships
between the words in a sentence. This results in directed acyclic graphs; for instance, like the one
depicted in Figure 4.6.

dmv aims to learn a dependency structure starting from the root position, recursively adding
new structure until all words in the sentence are covered. First, the dependent of the root node is
selected. From this dependent, the left and right subgraphs are added in a depth-first manner. If no
more dependent can be found, a stop condition is selected.

Following the notation of Klein [2004], the task is to learn a dependency structure D. For each
word h, the left and right dependents of h are defined by depsD(h, l) and depsD(h, r), respectively.
The probability of the dependency structure D(h), which has h as its root, can be defined as

P(D(h)) = �dir∈{l , r}�a∈depsD(h,dir)Pstop(¬stop|h, dir , adj)

Pchoose(a|h, dir)P (D(a))

Pstop(stop|h, dir , adj).

Here, Pstop(stop|h, dir , adj) describes the probability that h has no more dependents; h is the
head, dir describes the direction, and adj describes adjacency (true if in direction dir an argument
has been generated). The probability of the selection of a dependent a as the dependent of h is
described by Pchoose(a|h, dir), and the probability of the dependency structure that has a as its root
is P(D(a)).

The three parameters (Pstop, Pchoose, and Proot, which describe the probability that a specific
word is pointed to by the root node) are re-estimated using the em algorithm, just like in the ccm
model.
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CCM and DMV. The ccm and dmv models can be combined into a new model that assigns
structure based on the structure found by both systems [Klein 2004]. The probability of a tree
structure in the combined system is the product of the probabilities of the separate systems.

It turns out that the combination of ccm and dmv leads to better results compared against
the results of the separate systems. This illustrates that the structures identified by ccm and dmv
are complementary.

This direction of research (in particular learning dependency relations) has received consid-
erable attention the last few years. For instance, Spitkovsky [2013] described a range of systems,
Headden III [2012] incorporated lexical features, and Naseem et al. [2010] used language indepen-
dent rules, like language universals.

U-DOP
The u-dop system [Bod 2006a, 2006b] relies on Data-Oriented Parsing (dop) [Bod 1998, Bod et al.
2003] as the underlying formalism. u-dop starts by generating all possible (binary) tree structures
and uses the dop statistical model to decide which tree structures to keep. Because u-dop relies so
much on the dop statistical model, we will discuss dop first.

dop is a grammar formalism that is structurally equivalent to context-free grammars. The
difference lies in the fact that the statistical model is stronger compared to stochastic context-free
grammars. Instead of assigning probabilities to context-free grammar rules, dop assigns probabilities
to elementary subtrees. Context-free grammar rules form a subset of all elementary subtrees of a
tree structure. Elementary subtrees are subtrees for which on all levels in the tree either none or all
children are present. This includes the entire tree structure. Figure 4.7 gives an example of a tree
structure (the left-most tree) and all its elementary subtrees (which includes the full tree structure).

During parsing, elementary subtrees are combined using left-most substitution. This process
combines two elementary subtrees by merging the left-most non-terminal in one elementary tree and
the root non-terminal of the other node. A particular property of parsing using elementary subtrees
is that there may be several ways to generate the same parse (which corresponds to a tree structure
over the sentence being parsed). One such way is called a derivation and the resulting structure is
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FIGURE 4.7: Elementary tree structures in dop.
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FIGURE 4.8: Two derivations using left-most substitution that lead to the same parse.

called a parse. Figure 4.8 illustrates two derivations that lead to the same parse using the elementary
subtrees of Figure 4.7.

To compute the probability of a derivation, dop follows the same principle as is used in
probabilistic context-free parsing. The probability of a derivation is the product of the probabilities
of the separate rules ti (elementary subtrees in the case of dop) being used:

P(t1 ◦ t2 ◦ . . . ◦ tn) = �n
1P(ti),

where ◦ denotes the process of combining elementary subtrees using left-most substitution (or the
application of context-free grammar rules in the case of context-free parsing).

The probability of an elementary subtree is computed using the maximum likelihood estimate
of a tree over all trees with the same root symbol:

P(t) = |t |
�t ′:r(t ′)=r(t)|t ′|

,

where r(t) returns the symbol that can be found at the root of tree t . These probabilities are smoothed
using Good–Turing smoothing [Good 1953].

Since there may be multiple derivations that lead to the same tree structure, the probability of
a parse is computed by combining the probabilities of all derivations D that lead to the same parse T :

P(T ) = �D derives T P (D).

u-dop relies heavily on the strong statistical power of the dop framework. The advantage of
using elementary subtrees as items receiving probabilities is that in a probabilistic way, long-distance
dependencies may be modeled. The disadvantage of the elementary subtrees is that given a decent
size treebank, exponentially many elementary subtrees may be generated. This requires decisions,
such as the use of Monte Carlo sampling [Hammersley and Handscomb 1964], to estimate the
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probability of a derivation to practically limit computational effort. Alternatively, one may try to
reduce the exponential size of the grammar into polynomial size using pcfg reduction techniques
[Goodman 1996, 2003].

u-dop starts by generating all possible binary tree structures on a set of example sentences.
Based on these structures, all elementary subtrees are generated. The probabilities of these elemen-
tary subtrees are estimated using the em algorithm.

4.2.5 COMPARISON OF EMPIRICAL SYSTEMS
The systems that have been discussed can be compared according to different aspects. It turns out
that two groups of systems can be identified. The systems within a group approach the problem in a
similar way, whereas the two groups each have their own approach. Table 4.2 provides an overview
of different properties of the two groups of systems. The first group consists of emile, abl, and
adios. The second group contains ccm/dmv and u-dop.

The first group consists of systems that start from a collection of strings of words, whereas the
second group requires strings of pos tags. It has to be noted that, for instance, Klein and Manning
[2002] also reported results on a dataset on which pos tags have been induced in an unsupervised way.

The systems in both groups rely on the Zipf distribution that can be found in natural language
[Zipf 1929]. This distribution states that a small selection of words occurs very frequently, whereas
many words only occur sporadically. In the systems that learn structure on strings of words, the
frequently occurring words serve as identifiers or markers in contexts. Based on the frequently
occurring contexts, expressions can be identified. The expressions consist of words that can be found
in the long tail, i.e., words that only occur infrequently.

In contrast, the systems that take string of pos tags as input rely more on the probabilistic
properties of frequently co-occurring symbols. These systems, which both use em estimating to
identify useful probabilities, require patterns that occur frequently enough to allow for reliable
statistics. A pos tag can be seen as an equivalence class for a group of words that all serve the

TABLE 4.2: Overview of properties of the two groups of
empirical systems

Group 1 Group 2

Systems emile, abl, adios ccm/dmv, u-dop
Input Strings of words Strings of pos tags
Approach Expanding Reducing
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same (syntactic) function, such as nouns or verbs. By grouping all these words together, the problem
of computing probabilities for unseen or very infrequently occurring words is reduced.

Another property in which the groups differ is the approach. The systems in group 1 slowly
introduce structure only when enough evidence has been found. The reason for this is that only when
useful contexts and corresponding expressions are found the systems can start identifying structure.
The systems in group 2 are greedy. They start by assigning all possible structures and based on the
frequently occurring structures readjust probabilities. Structures that are not useful will receive a very
low probability and will not be retained.

Comparing the systems within group 1, emile and adios are quite similar. Both systems
introduce structure only when enough evidence if found (either by frequency of the context or by
significant paths through the nodes). abl always introduces structure whenever it can, but due to
the greediness of the first phase, a second phase that aims to remove incorrect structure is required.

ccm and u-dop both identify structure based on the probabilities of all possible structures.
ccm is based on the context-free grammar formalism, whereas u-dop relies on the statistically
stronger dop formalism.

4.3 ISSUES FOR EVALUATION
Formal grammatical inference results are in the form of mathematical proofs. As such, the evaluation
of the work in that area is done by examining the formal proofs. The algorithms used in the proofs
are typically not implemented and used on real data, but they provide evidence that a particular
family of languages can be learned efficiently using the algorithm.

Empirical grammatical inference, on the other hand, starts from the notion that we know
that a particular language (coming from a specific family of languages) is efficiently learnable, but a
formal description of this family of languages is not necessarily or typically available. For instance,
humans are able to learn languages from the family of natural languages, but we do not have a formal
description of this family. Also, so far, no family of formal languages is known that can be shown to
be formally learnable under any learning setting and to contain the family of natural languages.

Note that empirical grammatical inference deals with the evaluation of a learning system based
on data from a specific language that is known to be a member of a family of languages. This type
of evaluation does not result in (mathematical) proof of the learnability of families of languages.
However, the aim is to investigate in how far a learning system can identify one or more languages.
Based on this information, the algorithm itself may be investigated either to improve the results or
to form the basis of formal grammatical inference proofs.

To be able to compare different empirical grammatical inference systems and to know how
far away the output of a system is from the target language, an evaluation method is needed.
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FIGURE 4.9: Schematic representation of the looks-good-to-me evaluation approach.

Several evaluation approaches are found in the literature. van Zaanen [2002a, pp. 58–62] provides
an overview of three different evaluation approaches. In van Zaanen et al. [2004] a fourth approach
is identified as well. Another overview of the four approaches can be found in van Zaanen and de la
Higuera [2011]. We will describe each of them here in turn, together with a brief discussion of their
advantages and disadvantages.

4.3.1 LOOKS-GOOD-TO-ME APPROACH
The looks-good-to-me approach is a subjective evaluation method. The approach is visualized
in Figure 4.9. The grammatical inference system under consideration is applied to an unstructured
collection of sequential data, a corpus. The output of the system, which can either be in the form of
a grammar or a treebank version of the input data, is then evaluated manually. The person (typically
the developer of the system) performing the evaluation investigates the output of the system. The
evaluation may focus on specific constructions such as recursion or certain grammar rules, but it
may also be a visual inspection of the entire grammar or tree structures to check for coverage. If
the structures are found, the system is considered to be performing well. The evaluation is normally
described in the form of textual comments.

Advantages
The looks-good-to-me approach has several advantages. First, only a collection of plain, unstruc-
tured strings is required in addition to access to an expert who can evaluate the task. This collection
may be extracted from an existing dataset or the sentences may be created (semi)manually. This is
particularly useful if a structured version of data suitable for the task (which would allow for al-
ternative evaluation approaches) is not available or only small amounts can be found. In contrast,
unstructured data is more often available. Natural language corpora without syntactic annotation,
for instance in the form of tree structures, are more readily available than comparable treebanks. For
many natural languages or linguistic domains, no treebanks are available at all.

Second, since the output of the system is analyzed by an expert, special attention may be
given to specific syntactic constructions. The expert evaluator may simply disregard constructions
that the system is not supposed to learn and only focus on a subset of constructions, such as the
correct identification of noun phrases, or specific types of recursion.
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Disadvantages
The evaluation using the looks-good-to-me approach depends heavily on the expert evaluator.
Due to this influence, the looks-good-to-me approach has several disadvantages. First, the
evaluator should try to provide results that are as objective as possible. However, as the evaluator is
often the developer of the system, the evaluator may quickly find that the output looks good, hence
the name of the approach.

Second, the comparison of multiple systems is difficult. The results of the evaluation are
typically of qualitative nature. The evaluator describes the interesting aspects in natural language.
This means that the evaluation of the output of several systems may still be feasible when the systems
are compared in parallel at the same time, but when the outputs are compared by different experts
or when the output of one system is compared with an existing evaluation, the results may be much
less reliable.

Finally, if an evaluator only concentrates on the ability of a system to learn specific construc-
tions, this evaluation only holds for those specific constructions. In other words, the evaluation is
not usable as an overall evaluation of the system.

4.3.2 REBUILDING KNOWN GRAMMARS
The goal in grammatical inference is to design a system that learns a compact representation for a
language given some example strings. In other words, the aim of the task is to learn a grammar. The
rebuilding known grammars evaluation approach starts from the idea that there is an underlying
grammar that describes the language that needs to be learned. Given this grammar, example strings
are generated, which serve as the input to the grammatical inference system. The output of the
system, in the shape of a grammar, can then be compared against the original grammar. This entire
process is shown in Figure 4.10.

Learned
grammar

Plain
corpus
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Comparison
system
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Grammar
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FIGURE 4.10: Schematic representation of the rebuilding known grammars evaluation approach.
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When using the rebuilding known grammars evaluation approach, several choices have
to be made. First, the actual grammar that will be used for the evaluation needs to be selected. Often,
a grammar is selected from a set of well-known grammars [Cook et al. 1976, Hopcroft et al. 2001],
such as the parenthesis language or Dyck language, which contains sentences consisting of balanced
open and close parentheses. The results of the system on these well-known grammars illustrate how
well the system works, because the results can be compared against results of previous evaluations
(of other systems).

Second, a method for generating strings based on the grammar needs to be picked. Different
methods for generating strings may lead to different probability distributions over the generated
strings. The generative process should at the very least use all of the grammar rules at some point.
However, the actual choice of how the strings are to be generated may be more complex, especially
when probabilistic grammars are to be learned.

Third, the learned grammar needs to be compared against the original grammar. There are
two general approaches of doing this. If the languages (i.e., the set of acceptable strings) that can
be generated by the grammars are compared, the evaluation measures weak equivalence or language
equivalence. If the shape of the grammar rules is taken into account as well (which comes down to
comparing the tree structures generated by parsing the strings using the grammars), strong equivalence
or structural equivalence is measured.

Advantages
The rebuilding known grammars approach has several advantages. First, no sequential data is
required at all, as it is generated by the grammar. This means that if a system requires more input
data, this can be generated from the grammar on the fly.

Second, the influence of the evaluator is reduced (in two places). As the data is generated by
an automated process, the data cannot easily be tuned to the problem. Also, the comparison of the
output can be done in a more objective way, as two grammars can be compared. This leads to a more
objective evaluation (compared to the looks-good-to-me approach).

Disadvantages
Even though the rebuilding known grammars approach solves some of the problems of the
looks-good-to-me approach, this approach has its own problems. First, the process that generates
the training data may still influence the evaluation. As mentioned earlier, the generation process
should make sure all grammar rules are used at some point, but additional requirements, such as
probabilistic properties of the language (if modeled) should be considered as well.

Second, the comparison of grammars (or their languages) is problematic. With more powerful
families of languages, the problem of language equivalence is undecidable. Intuitively, infinite
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languages require an infinite amount of comparisons before language equivalence can be established.
For small grammars, humans may still be able to do a deep comparison of the grammar rules
to show whether two grammars are equivalent. However, when more complex (and interesting)
grammars, such as wide-coverage natural language grammars, are used, this poses problems. Note
that comparing the grammars by generating strings based on one language and analyzing the
generated strings with the other grammar may provide language equivalence. However, this means
that a proper generation process is needed (as described above) and for more complex grammars, a
large amount of strings need to be generated and analyzed.

Third, the rebuilding known grammars approach can only be applied when the under-
lying grammar of a language is actually known. This is feasible with artificially created grammars,
which are often used with this evaluation approach. However, this is more difficult when consid-
ering natural languages. Some wide-coverage natural language grammars exist, but the generation
of training data as well as measuring equivalence of a learned grammar and the original grammar is
problematic.

4.3.3 COMPARE AGAINST A TREEBANK
The compare against a treebank evaluation approach starts from the notion that grammars can
be used to structurally annotate sentences. Instead of measuring the learned grammar (which may be
difficult), this approach measures the effectiveness of learning the structure in the form of trees. The
entire process is illustrated in Figure 4.11. Since van Zaanen and Adriaans [2001], this approach
has been one of the main evaluation approaches in the area of empirical grammatical inference.

To perform a compare against a treebank evaluation, a treebank (i.e., a collection of
structured sentences) is required. There are several ways to build such a treebank. For instance, the
treebank may be generated from an artificial grammar. Alternatively, it may be annotated manually
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FIGURE 4.11: Schematic representation of the compare against a treebank evaluation approach.
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or semiautomatically. This allows for the evaluation of languages for which the underlying grammar
is not (fully) known.

From the treebank, the plain sentences are extracted, resulting in a plain corpus. No structural
information (apart from the order in which the words occur) is present in the plain corpus. This plain
corpus serves as the input to the grammatical inference system under evaluation.

The grammatical inference system is applied to the plain corpus, which results in a learned
treebank. This learned treebank is a collection of tree structures. The trees are structured versions of
the sentences in the plain corpus. Note that some grammatical inference systems generate a grammar
and do not directly generate a treebank (whereas other systems do). If this is the case, a parser should
be used to analyze the sentences from the plain corpus using the learned grammar.

The actual evaluation compares the learned treebank against the original treebank. The
results of this comparison measure the degree to which the structure found in the learned treebank
corresponds to the structure in the original treebank.

Several metrics exist that each measure different aspects of the two treebanks. The most well-
known metrics stem from the field of information retrieval [van Rijsbergen 1979]. Precision provides
a measure of the correctness of the learned structures compared against the original treebank. correct

measures how many structures (which are typically described as brackets) are found in both gold

(original trees) and learned collections:

Precision =
∑

s∈structure |correct(gold(s), learned(s))|∑
s∈structure |learned(s)| .

Recall measures of the degree to which all structures of the original treebank are also found in the
learned treebank:

Recall =
∑

s∈structure |correct(gold(s), learned(s))|∑
s∈structure |gold(s)| .

In order to have one overall measure, the F-score is used, which is the geometric mean of precision
and recall:

F-score = 2 ∗ Precision ∗ Recall
Precision + Recall

Advantages
Comparing structures from two treebanks can be done completely objectively. It is easy to evaluate
another system against the same treebank and the numeric results are directly comparable.

To allow other researchers to evaluate using the same settings, standardized treebanks may be
used. Using standardized treebanks also limits the possibility to tune the training data to the system
(which is possible with the looks-good-to-me approach).
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An advantage of this approach with respect to the rebuilding known grammars approach
is that no string generation process is required. This resolves the problem of building a dataset that
measures the coverage of the entire grammar.

With respect to the looks-good-to-me approach, no language expert is required to perform
the evaluation. The evaluation process can be completely automated. This also reduces the evaluation
time and effort.

Disadvantages
The compare against a treebank approach relies on the availability of a treebank. However,
such datasets are not available for a wide range of languages. This limits the possibilities of evaluation
to only those languages for which such datasets have been developed.

The annotations in a treebank are performed based on a linguistic theory. Different linguistic
theories lead to different types of annotation. The resulting tree structures may be quite different
from the tree structures learned by the grammatical inference system. In other words, a grammatical
inference system may perform well on treebanks that are annotated according to one linguistic theory,
but perform badly on treebanks annotated using another theory. One of the reasons why different
linguistic theories exist and are used to annotate data is that the real underlying grammar of natural
language is not known.

Even though the metrics of precision and recall are well known, there are different ways
of applying them to the data. Firstly, there is the difference between micro and macro recall and
precision. With micro metrics, a global contingency table is constructed and used to compute the
results. Macro metrics calculate precision and recall for each tree and the average of these scores lead
to the overall results. Additionally, it may be unclear which structures should be taken into account.
Brackets that completely cover the entire sentence or brackets that only cover one word may or may
not be used (they are in a way trivial to add). These choices have a significant impact on the actual
results of a system. For a proper evaluation, it has to be made clear exactly which design choices have
been made.

4.3.4 LANGUAGE MEMBERSHIP
The language membership evaluation approach concentrates on measuring whether the grammar
describes the language in a weak generative sense (in contrast to compare against a treebank,
which measures strong generative equivalence). The approach is illustrated in Figure 4.12.

Initially, the grammatical inference system is trained using the training information. The
grammatical inference system tries to identify regularities within this data that allows it to decide
whether newly seen sentences are either a member of the language under consideration or not.

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮

wjj
高亮



110 4. LEARNING NON-REGULAR LANGUAGES

Membership
information

Training
information

Compare
membership

Test
sentences

GI system

Results

FIGURE 4.12: Schematic representation of the language membership evaluation approach.

Next, the evaluation starts. The system is fed test sentences. This set should contain sentences
that are member of the language, but also sentences that are not a member of the language to be
learned. The output of the system consists of a tag for each sentence that describes whether each
of the test sentences belongs to the language or not. This membership information is compared
against the real language membership information, leading to the result, which describes how well
the system can describe the overall language disregarding the internal structure.

Within the area of grammatical inference, this approach has been used extensively in com-
petitions (comparable to shared tasks which are common in other areas). Examples of competitions
that used this evaluation approach are Abbadingo [Lang et al. 1998], Gowachin, Omphalos [Starkie
et al. 2005], and Tenjinno [Starkie et al. 2006].

Typically, this approach only measures the precision of the language membership, which is
defined as the percentage of correctly tagged sentences. This means that it can measure how well
the systems identify sentences belonging to the language or not, but it does not measure how well
the language learned by the system covers the entire language under consideration (recall). This can
only be measured properly by evaluating all sentences in the language, which is impossible in case
of infinite-size languages.

Another approach to measuring coverage or recall is to generate sentences based on the
learned grammar (assuming it is a generative grammar). By considering the percentage of generated
sentences that is really member of the language, coverage can be measured.

If probabilistic grammars are learned, one may be more interested in how well the grammar
describes the probability distribution over the sentences in the language. In this case, another
metric may be more useful. Perplexity measures the probability of the test set assigned by the
language model. It is defined as 2H where H is the entropy of probability distribution P : H =
− ∑n

i=1
P(wi) log2 P(wi)

n
. Essentially, it measure the amount of surprise of seeing the next symbol
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in a string. If the probability distribution of the system (P ) describes the language well, then the
probability of the string will be high and hence the perplexity will be low. Another way of looking
at perplexity is that lower perplexity means that a smaller number of bits is required to describe the
model.

Advantages
The main advantage of the language membership evaluation approach is that it allows for the
comparison of the system disregarding the representation of the grammar. As long as the system is
able to assign tags that indicate whether a sentence is member of the language or not, the evaluation
may be performed. This solves, for instance, the problem of the choice of linguistic theory used in
the annotation of treebanks.

Furthermore, the evaluation may be performed automatically without human interference,
making this another objective evaluation method. The language under consideration may be auto-
matically generated, but naturally occurring data (for which the underlying grammar is unknown)
may be evaluated as well.

Disadvantages
A proper evaluation using this approach requires a good sentence generation method. It has to be
clear that at the some point (up to infinity) in time the entire language is being tested. The choice
of the method that generates test sentences may have an influence on the evaluation results. This
problem also holds when recall is being measured. For this a generative grammar needs to be learned,
and only using a method that is known to cover the entire grammar at some point can recall be
properly measured.

When using perplexity to measure how well the learned model fits the probabilistic language,
the typical approach is to evaluate the system based on the assigned probabilities per symbol. This
works well for languages described by, for instance, n-gram models (which assign a probability to
each symbol based on previous symbols), but for the evaluation of other types of grammars it may be
necessary to measure perplexity over complete strings (and normalize over the length of the string)
instead of symbols as described above.

4.4 FORMAL APPROACHES
Many of the systems described in this chapter focus on learning natural language syntax. These
systems try to learn grammars that are generatively stronger than, for instance, regular languages.
However, it is unclear whether the power of context-free grammars is strong enough to fully describe
natural language syntax. For example, Huybrechts [1984] and Shieber [1985] indicate that some
syntactic constructions may require grammars from more powerful families.
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Grammatical inference research that concentrates on learning natural language syntax goes
in two directions. First, empirical systems as described in previous sections aim to identify structure
that corresponds to linguistic theories defined by linguists. If we can build better systems, these
improvement may provide further insight into the learning process, the linguistic formalism, and
(perhaps most importantly) the generative capabilities of the formal grammar formalism. Second,
based on the empirical grammatical inference systems, new insights in formal grammatical inference
may be gained.

Formal grammatical inference has shown that learning the family of context-free grammars is
difficult, or impossible, in most learning settings. However, context-free grammars may not even be
powerful enough to describe natural language syntax and some form of context-sensitive grammars
may be required to do so. If learning context-free grammars is already problematic then learning
context-sensitive grammars is clearly also problematic.

The solution to this problem is to identify families of languages that do not completely contain
families of languages that cannot be learned efficiently. The family of natural languages may contain
some context-free languages, some context-sensitive languages, but not all. In other words, it may
not be necessary to have access to the full power of context-sensitiveness. In a similar line, the full
power of context-freeness may not be required either.

Following this same line of thinking, there has been some research into the area of learning
context-sensitive languages. For instance, Alquézar and Sanfeliu [1997] described Augmented
Regular Expressions, Yoshinaka [2009] discussed variants of substitutability, and Clark [2010b]
proposed Distributional Lattice Grammars. In general, however, the field of learning context-
sensitive languages is still an open research area.

Another line of research in the area of formal grammatical inference, which is based on results
from empirical grammatical inference, deals with formal proofs based on the approaches used in the
empirical systems. In particular, the notion of substitutability has been used as the basis for the family
of languages called Non-Terminally Separated (nts) languages.

The family of nts languages is a subset of the family of deterministic context-free grammars.
An nts grammar is defined as G = 〈V , � , S , R〉 where V is a set of non-terminals, � is a vocabulary,
R is a set of production rules, and S ∈ V is the start symbol. Additionally, these grammars follow the
rule that for N ∈ V , if N

∗⇒ αβγ and M
∗⇒ β then N

∗⇒ αMγ . In other words, the non-terminals
in the grammar correspond exactly with the notion of substitutability. The family of nts grammars
have been shown to be efficiently pac learnable as well as identifiable in the limit [Clark and Eyraud
2005, 2007, Clark 2006].

Unfortunately, it is easy to see that natural languages are not nts languages. There are
situations in which substitutability leads to incorrect structures. For instance, if we consider the
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sentences John eats meat and John eats much, according to the notion of substitutability, the words
meat and much belong to the same equivalence class. This means that in all cases the two words
are interchangeable. However, in practice this is not the case. This example illustrates that learning
based on substitutability learns a family of languages that is different from the family of natural
languages.

The fields of formal and empirical grammatical inference both provide their own view on
learning languages. On the one hand, formal grammatical inference shows learnability of families
of languages under certain conditions. On the other hand, empirical grammatical inference shows
practical possibilities and limitations of learning from real-world data. The ultimate aim of gram-
matical inference of natural languages is to identify a family of languages that can be proved to be
learnable under realistic conditions and at the same time is powerful enough to fit the family of
natural languages.

4.5 SUMMARY
In this chapter, we primarily focused on empirical approaches to grammatical inference. Even though
empirical approaches do not lead to formal proofs of (efficient) learnability, there are situations in
which the underlying family of languages is (not yet) known. For instance, when aiming to learn
natural language syntax, there is still an ongoing discussion on the required generative power.

The empirical grammatical inference approaches that we have investigated here all rely on
a similar principle, that of substitutability. This principle corresponds with (linguistic) tests for
constituency. By identifying parts in the set of example strings that can be substituted for each
other, the learners aim to identify substrings that correspond to the linguistic notion of constituents.

Several practical systems have been treated in some detail and a comparison of these systems
has been made. The systems differ in their use of the notion of substitutability. emile, adios, and
abl directly identify substitutable substrings, whereas ccm and u-dop both implicitly use the notion
in their statistical models. Based on this comparison, the systems have been grouped into expanding
and reducing approaches. These groups correspond broadly with the model-merging and model-
splitting approaches, respectively, used in learning finite-state machines.

The main problem with empirical grammatical inference systems is that they are used to
provide evidence for the learnability of certain languages. However, the required language family
is (typically) not know beforehand, which means that the performance of the systems may not be
perfect. This requires a different type of evaluation. We cannot rely on the fact that a language is
learned perfectly or even within certain limits. We do like to know which systems perform better
than others and we would also like to have an idea of how far away from the target we are. To measure
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the performance of the systems, several evaluation approaches have been used. Each approach has
its own advantages and disadvantages.

Even though this chapter mainly focused on empirical systems, the ideas that underlie these
systems have led to formal learnability proofs as well.
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C H A P T E R 5

Lessons Learned
and Open Problems

We conclude the book with a brief summary of what has been covered, the main lessons we wish to
impart, and the open problems where research efforts ought to be directed.

5.1 SUMMARY
In Chapter 1, learning problems were introduced from the perspective of theoretical computer
science. Like other problems in computer science, it can be approached both formally and empirically,
and both have an important role to play in securing new knowledge. In Chapter 2, principles of
grammatical inference were explained and an overview of the formal methods and results were
presented. Several different definitions of learning were introduced, and several different classes
of grammars and formal languages were presented. Chapter 3 studied how linguistic generalizations
which can be represented with finite-state grammars can be learned. It was explained how many
formal results are based on state-merging and some a priori knowledge of the underlying finite-state
structure, which can be partial (the machine is deterministic) or complete (the machine has these
states and transitions). Chapter 4 studied learning problems where the targets cannot be represented
with finite-state grammars. In contrast to the previous chapters, this chapter focused on empirical
methods, and particular tasks. The important concept of substitutability was introduced and shown
to underly many systems that target context-free languages for learning. Different approaches to
evaluating empirical learning systems were also explained.

It is not an accident that Chapter 3 focused on formal results and Chapter 4 on empirical
results. Generally, there is a greater understanding of the learning problem when the targets of
learning can be represented with finite-state grammars than when they cannot be. (Of course, this
is not to say that there are no formal learning results for non-regular languages. As discussed in
Chapter 4, the work of Alexander Clark and his colleagues over the past decade formalized and
generalized important insights provided by the concept of substitutability.)
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5.2 LESSONS
We hope that readers have come to appreciate that “learning” can be defined in different ways.
Characterizing the learning problem is just as important as presenting solutions to it. In fact, several
aspects of the learning problem need to be defined: the family of languages that the learner aims
to learn (which defines the set of targets), the learning process (describing which information is
provided by the oracle to the learner and how this transfer of information takes place), and the
evaluation of the end result (which measures whether the learner’s output counts as success).

We also hope that readers have come to appreciate the role grammatical structure plays in
learning. A priori knowledge of some grammatical structure can really help. This a priori knowledge
can be thought of as a learning bias. We have argued that this bias is present in learning systems,
whether it is implicit or explicit. We believe understanding comes when it is explicit, so its conse-
quences can be studied and evaluated carefully.

5.3 PROBLEMS
The field of grammatical inference has been around for over 40 years. Research in the field has led to
a range of results. However, there are also still many open problems. de la Higuera [2006] discussed
some open problems in grammatical inference. These are not necessarily linguistically motivated
but may be of interest to the more theoretically oriented reader. In this section, we provide a broad
perspective on currently open problems.

5.3.1 LEARNING TARGETS
Researchers are still identifying classes of stochastic and non-stochastic stringsets, relations, and
functions relevant to natural language. This area of research is likely to continue for the foreseeable
future.

The reason is partly due to the fact that most formal results that use the families of the
Chomsky Hierarchy have been negative: these families of languages are not learnable efficiently from
positive data. At the same time, we also know that there are constructions, or patterns, that require
the grammars of natural languages to contain relatively strong syntactic constructions [Shieber 1985],
which seems to clash with the learnability results.

One solution to this problem, anticipated by Gold [1967], is to identify a family of natural
languages which cross-cuts the Chomsky Hierarchy. This has the effect of limiting the learning
problem to some, but not all, context-free or context-sensitive languages. Instead, families of
languages should be identified that capture the subset of languages that allows us to describe those
constructions and patterns that occur in the natural languages.
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In this vein, here are three areas we perceive as fruitful. We describe these areas in theo-
retical terms, but we stress that progress on these problems can be pursued both theoretically and
empirically.

Subregular formal languages and transductions. Chapter 3 mentioned several subregular classes
of formal languages that appear relevant to natural language. While some of this work was
done over 40 years ago [McNaughton and Papert 1971], it has not really been noticed by the
computational linguistics community, with some exceptions [Heinz et al. 2011]. Furthermore,
very little of this work has been generalized to transductions (one exception is Chandlee et al.
[2014]). It is expected that further research in this area will lead to a better understanding and
better systems that learn certain aspects of natural language phenomena, such as phonology.

Sub-mildly context-sensitive formal languages. Chapter 4 studied the problem of learning
context-free languages. Shieber [1985] has argued that there are natural languages that go
beyond the context-free boundary. Several linguistic formalisms are known to generate lan-
guages which are mildly context sensitive (mcs), including Tree-Adjoining Grammars [Joshi
1985, Vijay Shanker and Weir 1994] and Minimalist Grammars [Michaelis 1998, Stabler
2011]. There seems to be no feasible way to learn the entire class of mcs languages under
a variety of learning criteria, but subclasses can be so learned [Becerra Bonache et al. 2010,
Clark and Yoshinaka 2014]. While these results are formal in nature, both formal and empiri-
cal results on learning sub-mcs languages is one of the cutting-edges of grammatical inference
that has the potential to revolutionize our understanding of the kinds of computations present
in natural language systems.

Subregular tree languages and transductions. There is another interesting approach which can
be pursued which combines elements of the two above. Formal languages are sets of strings
and grammars can be said to generate or recognize these sets. However, when it comes to
natural languages, we are also interested in tree structures. Work in theoretical computer
science has studied sets of trees and grammars which generate or recognize these sets (for
an overview see Rozenberg and Salomaa [1997]). An early result established that yields of
regular tree languages coincide with context-free languages [Thatcher 1967]. Much later it
was realized that in fact the context-free languages are exactly the yields of the strictly 2-local
subclass of regular tree languages [Rogers 1994, 1997] (cf. dop in Chapter 4). Thus, while
regular tree languages properly include strictly 2-local tree languages, the yields are the same.
Regular tree transductions of regular tree languages allows one to move beyond context-free
string languages. In fact, the yield of the image of a regular tree language under a regular tree
transduction can yield a mcs language [Morawietz 2003, Mönnich 2006, Kobele et al. 2007,
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Graf 2013]. In other words, the study and learning of sub-mcs classes of string languages can
proceed by studying and learning subregular classes of tree languages and tree transductions.

An additional issue relates to the fact that most current formal descriptions of a language
are rather clear-cut. Either a string is in the language or it is not. While many sentences and
words in natural languages clearly belong (or not), there are situations in which it is not clear (to
humans) whether the sentence or word is really part of the language or not. For instance, deep center
embedding makes sentences harder to judge as acceptable. The phrase The bike that a woman rides is
acceptable, but The bike that a woman that a child likes rides is harder to understand. Teasing apart issues
of linguistic performance from linguistic competence is not straightforward, although guidelines do
exist [Schütze 1996]. To resolve this issue, or at least to be able to describe intermediate acceptability
or grammaticality judgments, stochastic grammars may be used. However, they face one significant
hurdle: longer strings are eventually going to be worse (less probable) than shorter strings. While
some ideas exist to address this issue [Clark and Lappin 2011, Clark et al. 2013], much remains to
be done.

One very simple argument in favor of learning stochastic grammars is the fact that “absence
of information is information.” When attempting to learn a grammar from a large corpus, should
we use the fact that the string the is absent, or should we only rely on those strings which are
present? Stochastic grammars allow us to determine that an event with frequency 0 does not exist,
and decisions can be made based on this information.

Finally, no research has yet been performed in the area of formally modeling second language
learning or learning dialects. In these situations, there might be (partial) overlap or interaction
between the first language and the second language.

5.3.2 LEARNING CRITERIA
The previous section identified one way of better characterizing the learning problem for natural
language in terms of better characterizing the targets of learning. In this section, we discuss open
areas of research that aim to better characterize the learning problem in terms of better characterizing
the learning criteria itself.

The input to learning. Much work in grammatical inference characterizes the input to the
learner in terms of a sequence or set of positive data, usually strings.

However, there is still an ongoing discussion on the nature of the interaction between
human oracles and learners, and how much interaction or linguistic data is really accessible
to the learner. In order to develop new models of active and interactive learning that describe
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learning settings or oracle–learner interaction more accurately, it would seem that information
from linguists and the language acquisition is essential.

For instance, it seems reasonable to assume that children also have access to some
aspect of the meaning of the sentences they hear. In other words, the input to learning
is not only some linear string of morphemes or sounds, but it is that plus some semantic
representation [Angluin and Becerra-Bonache 2008, Kwiatkowksi et al. 2010, 2012]. Other
types of potentially useful information include the prosodic and intonational contours of
utterances.

Finally, the problem of learning in the absence of noise is already difficult. So how about
the harder problem of learning in the presence of noise? While there have been important
advances in this regard [Angluin and Laird 1988], this is an area where advances can help
bridge the formal and empirical methods.

Measuring efficient learning. de la Higuera [1997] presents a learning paradigm which requires
learning algorithms to be efficient both in time and in data. The former is familiar: the time
required to output a grammar must be polynomial in the size of the input. The second is
less familiar but no less important: informally, the size of the input data needed for the
algorithm to output the correct grammar for each language must be polynomial in the size of
the grammar. Without the latter requirement, any learning algorithm can be transformed into
a time-efficient one [Pitt 1989]. However, de la Higuera’s paradigm makes the most sense
for regular learning targets. It remains unclear how to successfully define efficient learning
for non-regular targets. Past efforts to bound the number of errors or the number of mind
changes are reviewed along with some more recent ideas by Eyraud et al. [2015].

What counts as successful learning. Finally, as explained in Chapter 2, there is always the
question of what counts as successful learning.

In the case of formal grammatical inference, if exact learning is not required, what kinds
of approximations are? Several influential ideas have been formulated, but undoubtedly many
influential ideas remain to be formulated.

In the case of empirical grammatical inference, several ways of evaluating learning systems
were discussed in Chapter 4. Certainly, each of these await improvements (for instance if more
accurate treebanks or gold standards are developed) and other measures of evaluation can be
developed.

To conclude, there is no shortage of research to be done in grammatical inference. Compu-
tational linguistics provides a rich, fertile domain with plenty of specific tasks and problems, which
in turn provide a natural context for much of this research to take place.
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5.4 RESOURCES
Readers interested in learning more about grammatical inference are directed to three sources.
First, de la Higuera [2010] is a comprehensive and detailed monograph covering many aspects of
grammatical inference. Second, there is a forthcoming collection of chapters by leading researchers
on advanced topics in grammatical inference [Heinz and Sempere 2015]. Topics in that book include
active learning, spectral learning, learning tree languages, and learning context-sensitive languages,
among others. Third, the biannual International Conference of Grammatical Inference (ICGI) has
been meeting regularly in even-numbered years. More information about this conference series, its
published proceeding papers, associated challenges, and software for various algorithms, including
ones discussed in this book, can be found at http://www.grammarlearning.org.

5.5 FINAL WORDS
We hope that this book has provided a broad picture of the goals and methods of grammatical
inference as it relates to computational linguistics. This book has not attempted to be exhaustive,
but instead to provide enough of a sufficient foundation of knowledge that allows readers to engage
the literature in this area from its past and its future.

Perhaps we are dreaming, but if anyone comes to better appreciate the wonder of language
and the wonder of language learning as a result of this book, it will have achieved its purpose.

The End.

http://www.grammarlearning.org
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Alquézar, R. and Sanfeliu, A. (1997). Recognition and learning of a class of context-sensitive languages
described by augmented regular expressions. Pattern Recognition, 30(1):163–182. 112

Amengual, J. C., Benedı́, J. M., Casacuberta, F., Castaño, A., Castellanos, A., Jiménez, V. M., Llorens,
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