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Abstract

We argue that word meanings are not stored in a mental lexicon but are generated in the context

of working memory from long-term memory traces that record our experience with words. Current

statistical models of semantics, such as latent semantic analysis and the Topic model, describe what

is stored in long-term memory. The CI-2 model describes how this information is used to construct

sentence meanings. This model is a dual-memory model, in that it distinguishes between a gist level

and an explicit level. It also incorporates syntactic information about how words are used, derived

from dependency grammar. The construction of meaning is conceptualized as feature sampling from

the explicit memory traces, with the constraint that the sampling must be contextually relevant both

semantically and syntactically. Semantic relevance is achieved by sampling topically relevant fea-

tures; local syntactic constraints as expressed by dependency relations ensure syntactic relevance.

Keywords: Meaning; Predication; LSA; Topics; Construction-integration model; Semantics; Com-

prehension

1. Introduction

In this study, we are concerned with how meaning can be inferred from the analysis of

large linguistic corpora. Specifically, our goal is to present a model of how sentence mean-

ings are constructed as opposed to word meanings per se. To do so, we need to combine

semantic and syntactic information about words stored in long-term memory with local

information about the sentence context. We first review models that extract latent semantic

information from linguistic corpora and show how that information can be contextualized in

working memory. We then present a model that uses not only semantic information at the

gist level but also explicit information about the actual patterns of word use to arrive at sen-

tence interpretations.
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It has long been recognized that word meanings cannot just be accessed fullblown from a

mental lexicon. For example, a well-known study by Barclay, Bransford, Franks, McCarrell,

and Nitsch (1974) showed that pianos are heavy in the context of moving furniture, but that

they are musical in the context of Arthur Rubenstein. Findings like these have put into ques-

tion the notion that meanings of words, however they are represented (via semantic features,

networks, etc.), are stored ready-made in the mental lexicon from which they are retrieved

as needed. Rather, it appears that meanings are generated when a word is recognized in

interaction with its context (Barsalou, 1987). Indeed, there seems to be no fixed number of

meanings or senses of a word; new ones may be constructed as needed (Balota, 1990).

Furthermore, if meanings were prestored, then memory theory would have difficulty

explaining how the right meaning and sense of a word could be retrieved quickly and

efficiently in context (Klein & Murphy, 2001). Problems such as these have led many

researchers to reject the idea of a mental lexicon in favor of the claim that meaning is

contextually constructed. Such a view seems necessary to account for the richness of mean-

ing and its emergent character. The question is: How does one model the emergence of

meaning in context?

There are various ways to approach this problem (e.g., Elman, 2009). We focus here on

statistical methods to infer meaning from the analysis of a large linguistic corpus. Such

models are able to represent human meaning on a realistically large scale, and do so without

hand coding. For example, latent semantic analysis (LSA; Landauer & Dumais, 1997)

extracts from a large corpus of texts a representation of a word’s meaning as a decontextual-

ized summary of all the experiences the system has had with that word. The representation

of a word reflects the structure of the (linguistic) environment of that word. Thus, machine-

learning models like LSA attempt to understand semantic structure by understanding the

structure of the environment in which words have been used. By analyzing a large number

of texts produced by people, these models infer how meaning is represented in the minds of

the persons who produced these texts.

There are two factors that make models like LSA attractive: One is scale, because an

accurate model of something as complex as human meaning requires a great deal of infor-

mation—the model must be exposed to roughly the same amount of text as people encounter

if it is to match their semantic knowledge; the other is representativeness. By analyzing an

authentic linguistic corpus that is reasonably representative for a particular language user

population, one ensures that the map of meaning that is being constructed is unbiased,

thereby emphasizing those aspects of language that are relevant and important in actual lan-

guage use.

Latent semantic analysis and the other models discussed below abstract from a corpus a

blueprint for the generation of meaning—not a word’s meaning itself. We argue for a gener-

ative1 model of meaning that distinguishes between decontextualized representations that

are stored in long-term memory and the meaning that emerges in working memory when

these representations are used in context. Thus, the generative model of meaning that is the

focus of this paper has two components: the abstraction of a semantic representation from a

linguistic corpus, and the use of that representation to create contextually appropriate mean-

ings in working memory.

W. Kintsch, P. Mangalath ⁄ Topics in Cognitive Science 3 (2011) 347



Long-term memory does not store the full meaning of a word, but rather stores a

decontextualized record of experiences with a particular word. Meaning needs to be

constructed in context, as suggested by Barclay et al.’s piano example. The record of a life-

time’s encounter with words is stored in long-term memory in a structured, well-

organized way, for example, as a high-dimensional semantic space in the LSA model. This

semantic space serves as a retrieval structure in the sense of Ericsson and Kintsch (1995).

For a given word, rapid, automatic access is obtained to related information in long-term

memory via this retrieval structure. But not all information about a word that has been

stored is relevant at any given time. The context in which the word appears determines what

is relevant. Thus, what we know about pianos (long-term memory structure) and the context

(furniture or music) creates a trace in long-term working memory that makes available the

information about pianos that is relevant in the particular context of use. From this informa-

tion, the contextual meaning of piano is constructed. Meaning, in this view, is rich and for-

ever varied: Every time a word is used in a new context, a different meaning will be

constructed. While the difference in meaning might only be slight at times, it will be signifi-

cantly varied at others (as when a word is used metaphorically). Recent semantic models

such as the Topic model (Griffiths & Steyvers, 2004; Griffiths, Steyvers, & Tenenbaum,

2007; Steyvers & Griffiths, 2007) derive long-term traces that explicitly allow meaning to

be contextualized. We use insights from their work to construct a model for sentence inter-

pretation that includes syntactic information. We discuss below how sentence meaning is

constructed in working memory. But first we review several alternative models that describe

how lexical information can be represented in long-term memory.

2. The representation of semantic knowledge in long-term memory

For a large class of cases—though not for all—in which we employ the word ‘‘meaning’’

it can be defined thus: the meaning of a word is its use in language.

—Wittgenstein (1953)

A word is characterized by the company it keeps.

—Firth (1957)

Language is a system of interdependent terms in which the value of each term results

solely from the simultaneous presence of the others.

—Saussure (1915)

One way to define the meaning of a word is through its use, that is, the company it keeps

with other words in the language. The idea is not new, as suggested by the quotations above.

However, the development of modern machine learning algorithms was necessary in order

to automatically extract word meanings from a linguistic corpus that represent the way

words are used in the language.2
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There are various ways to construct such representations. Typically, the input consists

of a large linguistic corpus, which is representative of the tasks the system will be used

to model. An example would be the TASA corpus consisting of texts a typical Ameri-

can high-school student might have read by the time he or she graduates (see Quesada,

2007, for more detail). The TASA corpus comprises 11m word tokens, consisting of

about 90k different words organized in 44k documents. The corpus is analyzed into a

word-by-document matrix, the entries of which are the frequencies with which each of

the words appears in each document. Obviously, most of the entries in this huge matrix

are 0; that is, the matrix is very sparse. From this co-occurrence information, the

semantic structure of word meanings is inferred. The inference process typically

involves a drastic reduction in the dimensionality of the word-by-document matrix. The

reduced matrix is no longer sparse, and this process of generalization allows semantic

similarity estimates between all the words in the corpus. We can now compute the

semantic distance between two words that have never co-occurred in the corpus. At the

same time, dimension reduction also is a process of abstraction: Inessential information

in the original co-occurrence matrix has been discarded in favor of what is generaliz-

able and semantically relevant.

In LSA (Landauer & Dumais, 1997; Martin & Berry, 2007), dimension reduction is

achieved by decomposing the co-occurrence matrix via singular value decomposition and

selecting the 300 or so dimensions that are most important semantically. A word is repre-

sented by a vector of 300 numbers that are meaningless by themselves but which make it

possible to compute the semantic similarity between any pair of words. Locating each word

in the 300-dimension semantic space with respect to every other word in the semantic space

specifies its meaning via its relationship to other words. Furthermore, vectors in the same

semantic space can be computed that represent the meaning of phrases, sentences, or whole

texts, based on the assumption that the meaning of a text is the sum of the word vectors in

the text. Thus, semantic distance estimates can be readily obtained for any pair of words or

texts, regardless of whether they have ever been observed together. This feature makes LSA

extremely useful and has made possible a wide range of successful applications, both for

simulating psycholinguistic data and for a variety of practical applications (Landauer,

McNamara, Dennis, and Kintsch, 2007; http://lsa.colorado.edu).

The Topic model (Griffiths & Steyvers, 2004; Griffiths et al., 2007; Steyvers & Griffiths,

2007) represents the gist of a document as a distribution over latent variables called topics.

A topic is a probability distribution over words. Documents are generated by choosing

words from the distribution of words associated with the topics that represent a document.

First a topic is sampled from the set of topics that represents the gist of a document, and then

a word is sampled from the probability distribution of words for that topic. This generative

procedure is reversed to infer the distribution of topics for the documents in a corpus and

the distribution of words for topics.

Topics are frequently individually interpretable. For instance, Griffiths et al. (2007) find a

‘‘printing’’ topic characterized by words like printing, paper, press, type, process, ink, etc.,

and an ‘‘experiment’’ topic characterized by hypothesis, experiment, scientific, observation,
test, and so on. Different senses or meanings of a word may be assigned to different topics.
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Thus, the word play has a high probability not only for the theater topic but also for the

sports topic.

In Table 1, the 20 nearest neighbors of the word play are shown both for LSA and the

Topic model. To find the nearest neighbors in LSA, the cosines between play and all the

words in the corpus are computed and the 20 words with the highest cosine are chosen. Words

that appeared fewer than 10 times in the corpus were excluded from the LSA as well as Topic

computations in order to reduce noise. The 20 words that have the highest conditional proba-

bility in the Topic analysis of the TASA corpus given play are also shown in Table 1. The

two sets of words are obviously related: Six of the words are in common. The LSA neighbors

appear to fall into two clusters, corresponding to the theater sense of play and the sports
sense. The Topic model yields three clusters: The theater and sport senses, like LSA; but also

a children-play sense, containing words like children, friends, and toys. (These words are, of

course, also strongly related to play in LSA; they just do not make the top 20).

Latent semantic analysis and the Topic model are by no means the only ways to infer

semantic structure from a linguistic corpus. Quite a different approach has been taken in the

BEAGLE model of Jones and Mewhort (2007) who model word meaning as a composite

distributed representation by coding word co-occurrences across millions of sentences in a

corpus into a single holographic vector per word. This vector stores a word’s history of

co-occurrence and usage in sentences similar to Murdock’s (1982) model of episodic

Table 1

The 20 nearest neighbors of play in LSA and the Topic model

20 Nearest Neighbors by

LSA cosine

20 Nearest Neighbors by

Conditional Probability

play play
playing game

played playing
kickball played
plays fun
games games
game pat

volleyball children

fun ball

golf role

costumes plays
actor important

rehearsals music

actors mart

drama run

comedy friends

baseball lot

tennis stage

theater toys

checkers team

LSA, latent sementic analysis.
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memory for word lists. Jones and Mewhort simulate a wide range of psycholinguistic data

with their Holograph model.

Kwantes (2005) proposes a context model of semantic memory which assumes that what

is stored is basically a document-by-term matrix as in LSA, but then does not use dimension

reduction to compute the vector representing a word but a resonance process modeled after

the episodic memory model of Hintzman (1984). A few illustrations are given that demon-

strate the ability of this model to simulate human semantic judgments.

In the Hyperspace Analogue to Language (HAL) model of Burgess and Lund (2000), a

semantic representation is constructed by moving an n-word window across a text and

recording the number of words separating any two words in the window. This procedure

essentially weights co-occurrence frequencies by their distance. Unlike most of the methods

described above, it does not involve dimension reduction.

Note the diverse origins of these models. LSA has its roots in the literature on informa-

tion retrieval. The Topic model comes from Bayesian statistics. The other two approaches

mentioned here are semantic memory counterparts of well-established episodic memory

models: Jones and Mewhort’s holographic model extends Murdock (1982), and Kwantes

elaborates Hintzman (1984). Murdock and Hintzman make very different assumptions about

the nature of memory—a single holographic trace for Murdock versus multiple traces for

Hintzman. It is interesting that both approaches could be extended to semantic memory,

suggesting that episodic and semantic memory may differ not so much in their architecture,

but more in the nature of what is being stored.

The corpus that is the input to whatever analysis is performed determines the nature of

the representation obtained. The TASA corpus, for instance, corresponds roughly to texts a

high-school graduate might have read. That is, it serves well to simulate students at that

level. But if one wants to analyze texts requiring specialized knowledge, a corpus represen-

tative of that knowledge would have to be analyzed. Such a corpus would have to be of a

sufficient size to yield reliable results (see Quesada, 2007).

Thus, there are many methods to extract, without supervision, a semantic representation

from a linguistic corpus. The question which of the current models is best has no straightfor-

ward answers. They all produce qualitatively similar results, but they are not equivalent.

Depending on the task at hand, some models may be more suited than others. For instance,

conditional probabilities in the Topic model can capture some of the asymmetries present in

human similarity judgments and association data, which the distance measure used in LSA

cannot (Griffiths et al., 2007). The holograph model yields data on the growth of concepts as it

is exposed to more and more texts, which is not possible with LSA (Jones & Mewhort, 2007).

On the other hand, LSA has been the most successful model for representing text meanings for

essay grading (Landauer, Laham, & Foltz, 2003) and summary writing (Kintsch, Caccamise,

Franzke, Johnson, & Dooley, 2007). Thus, while particular models might be better suited to

certain functions, they all get at a common core of meaning by extracting semantic information

from the co-occurrences of words in documents or sentences. However, there is more informa-

tion in a corpus than that—specifically, information about word order and syntactic structure.

Taking into account these additional sources of information makes a whole lot of difference.

We shall describe two such approaches, one using word order and the other using syntax.
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The holograph model of Jones and Mewhort (2007) already mentioned is capable of tak-

ing into account word order information, in addition to co-occurrence information. Jones

and Mewhort use order-sensitive, circular convolution to encode the order in which words

occur in sentences. Thus, their model distinguishes between two kinds of information, like

Murdock’s episodic memory model: item information—which words are used with which

other words in the language—and order information, which encodes some basic syntactic

information. The model therefore can relate words either semantically (like LSA) or syntac-

tically (clustering by parts of speech, for instance). This dual ability greatly extends the

scope of phenomena that can be accounted for by statistical models of meaning. Jones,

Kintsch, and Mewhort (2006) have compared the ability of the holograph model, HAL, and

LSA to account for a variety of semantic, associative, and mediated priming results. They

demonstrate that both word context and word order information are necessary to explain the

human data.

Another source of information in a corpus is provided by the syntactic structure of

sentences. While word order, especially in a language like English, can be considered an

approximation to syntax, there is more to syntax than just that. Statistical models of seman-

tics can exploit this additional information. A model that successfully extracts information

about syntactic patterns as well as semantic information from a linguistic corpus is the Syn-

tagmatic-Paradigmatic (SP) model of Dennis (2005). The SP-model is a memory model with

a long-term memory that consists of all traces of sentences that have been experienced. It

analyzes these traces for their sequential and relational structures. Syntactic information is

captured by syntagmatic associations: The model notes which words follow each other (e.g.,

drive-fast, deep-water). Semantic information is captured by paradigmatic associations:

words that are used in the same slot in different sentences (e.g., fast-slow, deep-shallow).

Combining sequential and relational processing in this way enables the SP model to capture

the propositional content of a sentence. Hence, the model can answer questions that depend

upon that understanding. For instance, after processing a set of articles on professional ten-

nis, the model performed quite well when asked questions about who won a particular

match—but only if the relational and sequential information were combined. After sequen-

tial processing, the model answered with some player’s name, but only 8% of the time with

the correct name, because although it knew that a player’s name was required, it was not

aware of who played against whom, and who won and who lost. When it was given that

information—the relational or paradigmatic associations—the percentage of correct answers

rose to 67%.

Being able to register propositional content has important consequences for inferencing.

In the following example from Dennis and Kintsch (2008), the SP-model offers a compel-

ling account of what has been called inference by coincidence: Given the sentence ‘‘Charlie
bought the lemonade from Lucy,’’ people know right away that ‘‘Lucy sold the lemonade to
Charlie’’ and that ‘‘Charlie owns the lemonade.’’ According to the SP-model, this is not

because an explicit inference has been made; rather, it is a direct consequence of under-

standing that sentence: Understanding a sentence means aligning it with similar sentences

that are retrieved from long-term memory. Thus, the Charlie sentence will be aligned with a

set of sequential memory traces of the form A buy B from C where A is a set of buyers, B is
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a set of objects bought and sold, and C is a set of sellers. Since the same sets also appear in

sequential traces of the form C sells B to A, and A owns B, the model knows that Charlie
belongs to the set of what we call buyers and owners. Note that sets of words like A are

extensionally defined as the words that fit into a particular slot: A list of words is generated

that are the Agents of buy, or the Objects, but semantic roles are not explicitly labeled.

Thus, while the differences between the various bag-of-words models we have discussed

are relatively superficial, taking into account word order information or syntactic structure

allows statistical models to account for a whole new range of psycholinguistic phenomena at

an almost human-like scale. The great strength of all of these models is that they are not toy

models and do not depend on hand coding, but nevertheless allow us to model many signifi-

cant aspects of how people use their language. But do the representations they generate really

reflect the meaning of words as that term is commonly understood? These models all decon-

textualize meaning—they abstract a semantic representation from a large corpus that summa-

rizes the information in the corpus about how that word has been used in the context of other

words. But words mean different things in different contexts, often totally different things, as

in the case of homonyms. Even words that have only one meaning have different senses when

used in different contexts. Meaning, one can argue, is always contextual. Words do not have

meaning, but are clues to meaning (Rumelhart, 1979; as discussed by Elman, 2009).

3. The construction of word meaning in working memory

How meaning is constructed can be illustrated with reference to LSA. LSA represents the

meaning of play as a single vector; then why do we understand play in one way in the con-

text of theater and in another way in the context of baseball? We briefly sketch the Predica-

tion model of Kintsch (2001, 2007, 2008a,b) that addresses this problem when the context is

a single word, before extending it to sentence contexts.

In WordNet (http://wordnet.princeton.edu), bark has three unrelated meanings, with four

senses each for the tree-related bark as well as the dog-related bark, and a single sense for

the ship-related bark. In LSA a single vector represents the meanings and senses of bark.

Thus, LSA by itself does not distinguish between the different meanings and senses of a

word. The Predication model of Kintsch (2001) describes a process that brings about appro-

priate word senses when a word is used in context from an LSA vector that combines all

meanings and senses, generating a context-appropriate word sense. It allows the context to

modify word vectors in such a way that their context-appropriate aspects are strengthened

and irrelevant ones are suppressed. In the Construction-Integration (CI) model of Kintsch

(1998), discourse representations are built up via a spreading activation process in a network

defined by the concepts and propositions in a text. Meaning construction in the Predication

model works in a similar way: A network is constructed containing the word to be modified

and its semantic neighborhood and is linked to the context; spreading activation in that net-

work assures that those elements of the neighborhood most strongly related to the context

become activated and are able to modify the original word vector. For instance (Kintsch,

2008a), consider the meaning of bark in the context of dog and in the context of tree. The
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semantic neighborhood of bark includes words related to the dog-meaning of bark, such as

kennel, and words related to the tree-meaning, such as lumber. To generate the meaning of

bark in the context of dog, all neighbors of bark are linked to both bark and dog according

to their cosine values. Furthermore, the neighbors themselves inhibit each other in such a

way that the total positive and negative link strength balances. As a result of spreading acti-

vation in such a network, words in the semantic neighborhood of bark that are related to the

context become activated, and words that are unrelated become deactivated. Thus, in the

context of dog, the activation of kennel increases and the activation of words unrelated to

dog decreases; in the context of tree, the activation values for lumber increases, while

kennel is deactivated. The contextual meaning of barkdog is then the centroid of bark and its

dog-activated neighbors, such as kennel; that of barktree is the (weighted) centroid of bark
and neighboring words like lumber. Barkdog becomes more dog-like and less tree-like; the

opposite happens for barktree. Two distinct meanings of bark emerge: Using the six most

highly activated neighbors to modify bark from a neighborhood of 500, the cosine between

barktree and barkdog is only 0.03. Furthermore, barkdog is no longer related to tree,

cos = )0.04, and barktree is no longer related to dog, cos = 0.02. Thus, context-appropriate

word meanings can be generated within a system like LSA, in spite of the fact that what

LSA does is to construct context-free word vectors.

Predication also generates meaning that is metaphorical rather than literal (Kintsch,

2008b). For example, the meaning of shark in the context of My lawyer is a shark can be

computed by predication. The neighbors of shark activated by lawyer include vicious,
dangerous, greedy, and fierce. These nodes are combined with the shark vector to generate a

new concept sharklawyer whose fishiness has been de-emphasized, but its dangerous character

has been retained: The closest neighbors of sharklawyer are danger, killer, frighten, grounds,
killing, and victims.3 It should be noted, though, that not all metaphors are as simple as in this

example. Frequently, the process of metaphor interpretation is much more complex, involv-

ing analogical reasoning and not just meaning transfer (for a discussion see Kintsch, 2008b).

While predication has been modeled as a spreading activation network in the CI model,

there are some disadvantages to this approach. Introducing a spreading activation network is

computationally complex and requires free parameters (How many neighbors are to be

searched? What is the activation threshold?). Shifting to a probabilistic model avoids these

problems. In the present context, this means replacing LSA with the Topic model. Meaning

is context sensitive in the Topic model: play will be assigned to different topics in theater
and baseball documents. Hence, predication with topic features amounts to calculating the

conditional probability of each word, given both the argument and the predicate word. Thus,

to predicate Shakespeare about play, we calculate the conditional probability of words given

play\Shakespeare. Table 2 shows the 20 words with the highest conditional probability

given play\Shakespeare and play\baseball. Predicating Shakespeare about play neatly

picks out the theater-related words from the neighbors of play and adds other related words.

Predicating baseball about play picks out the sports-related words from the neighbors of

play and adds other sports words. Thus, the mechanism by which predication is modeled in

the Topic model is quite different (and simpler), but it has qualitatively similar results: It

effectively contextualizes the meaning of words.
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Readers familiar with the Topic model should note that in our assessment and usage of

vector representation for words, we simply use the static rows from the word-topic matrix

that is a result of applying the inference procedure. Each topic has a multinomial distribu-

tion over words, and topics are independent. Our word vectors only capture this uncorrelated

association across multiple topics and can be seen as multidimensional vectors with each

dimension representing the probability of the word conditioned on a particular topic. The

Topic model is designed to be used with more sophisticated techniques capable of deriving

context-sensitive representations for words. Traditionally the Topic model treats words or

propositions as a new document and a disambiguated sharper distribution over topics is

Table 2

The 20 nearest neighbors of play in the Topic model, as well as the 20 nearest neighbors of

PLAY\SHAKESPEARE and PLAY\BASEBALL

P[W|PLAY] P[W|PLAY\SHAKESPEARE] P[W|PLAY\BASEBALL]

play play play

game game

playing playing

played played

fun games

games plays

pat important ball

children music

ball part

role run

plays stage

important

music team

part

run

friends

lot

stage

toys

team

audience baseball

theater hit

drama field

scene bat

actor sports

actors players

Shakespeare player

tragedy balls

performed football

scenes tennis

character throw

dramatic sport

W. Kintsch, P. Mangalath ⁄ Topics in Cognitive Science 3 (2011) 355



inferred using the Gibbs sampling procedure described in Griffiths and Steyvers (2004). For

computational tractability the model presented here uses only static representations of words

from the initial estimation phase.

Predication, then, is a model for a generative lexicon; it is an algorithm for the construc-

tion of word meanings when words are used in context. Words are polysemous, but in the

models described above their representation in long-term memory is context-free; predica-

tion constructs context-appropriate meanings in working memory on the fly, without having

to specify word meanings and senses beforehand, as in a mental lexicon. A new meaning for

a word emerges every time it is used in a different context. Every time a word is used its

meaning will be different—a little different when used in an ordinary way, more so when

used metaphorically. Thus, the vector with which LSA represents the meaning of shark is

altered very little in the context of swim, more so in the context of soup, and even more in

the context of lawyer.

Context, in the Construction-Integration (CI) model described above, has only been that

provided by another word. In normal language use, however, words are used as part of a

sentence and discourse. Sentence structure constrains understanding; syntax determines how

a sentence is interpreted. Below we describe a new model that extends the predication

model to sentence contexts.

4. Sentence meaning

The CI-II model of Mangalath (in preparation) combines ideas from the approaches dis-

cussed above with additional notions from the memory and from text comprehension litera-

ture. The principal components of the model are as follows:

1. Meaning is constructed in context in working memory from information stored in

long-term memory, as in the Construction-Integration model.

2. The general framework is that of the Topic model.

3. The syntagmatic-paradigmatic distinction is taken over from the Syntagmatic-Paradig-

matic-model.

4. A new element is the use of Dependency Grammar to specify syntactic structure.

5. Also new is the distinction between different levels of representation, allowing for a

coarse-grained gist and a fine-grained explicit representation.

We first discuss the arguments for introducing dependency grammar and a dual-memory

trace and then outline the proposed model.

4.1. Syntactic structure

Syntax clearly needs to be considered in meaning construction—but how? There are dif-

ferent conceptions of the role that syntactic analysis plays in human comprehension. For the

most part, psycholinguists have assumed that comprehension involves syntactic analysis
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together with a variety of other knowledge sources to arrive at an accurate and detailed

interpretation of a sentence that corresponds more or less to its linguistic representation.

There is good reason to believe that human sentence processing is more shallow and superfi-

cial than that. Ferreira and Patson (2007) have termed this the ‘‘good enough’’ approach to

language comprehension. They argue that comprehenders form representations that are good

enough for the task at hand—to participate in a conversation, to answer a question, to update

their knowledge—but mental representations are typically incomplete and not infrequently

incorrect.4 Thus, a model of comprehension should emulate the process of actual human

comprehension rather than emulating linguistic analysis. If, indeed, the ‘‘comprehension

system works by cobbling together local analyses’’ (Ferreira & Patson, 2007, p. 74), the

question arises how to model the priority of local analysis.

Current trends in linguistics and psycholinguistics offer useful suggestions. Linguistic

theory has taken a turn towards focusing on lexical items together with their associated syn-

tactic and semantic information (lexicalist-functionalist grammar, Bresnan & Kaplan, 1982;

combinatory categorical grammar, Steedman, 1996; tree-adjoining grammar, Joshi, 2004;

construction grammar, Goldberg, 2006). At the same time, psycholinguists have recognized

the importance of usage–based patterns with overlapping semantic, syntactic, and pragmatic

properties in language acquisition as well as language processing (e.g., Bates & Goodman,

2001; Garrod, Freudenthal, & Boyle, 1994; MacDonald, Pearlmutter, & Seidenberg, 1994;

MacDonald & MacWhinney, 1995; Tomasello, 2001, 2003). Thus, what is needed, is a for-

malism to decide (a) what the relevant phrasal units are that are combined in a sentence, and

(b) a way to construct the meaning of phrasal units from the word vectors of statistical

semantics.

Ideally, of course, a model should be able to learn both the latent semantic structure and

the syntactic structure from a corpus and to do so without supervision. The CI-II model,

however, does not do that, in that it does not specify how syntax is learned. Instead, it

focuses on how syntax, once it has been learned, is used in sentence comprehension and pro-

duction. A suitable grammar that specifies how the words in a sentence are related is depen-

dency grammar. As the name implies, dependency grammar (Mel’cuk, 1988; Sgall,

Hajicova, & Panevova, 1986; Tesniere, 1959) focuses on the dependency relations within a

sentence—which is the kind of information one needs in order to specify context in the

predication model. Compared with other grammars, dependency grammar is austere, in that

it does not use intermediate symbols such as noun phrase or verb phrase, nor does it use

semantic role labels such as agent or object. It merely specifies which word in a sentence

depends on which other word, and the part of speech of every word. Automatic dependency

parsers (Nivre et al., 2007; Yamada & Matsumoto, 2003) available from the Web can be

used to perform these analyses. Fig. 1 shows an example of a dependency tree overlaid with

a propositional analysis of the sentence after Kintsch (1974, 1998). As the example illus-

trates, dependency units correspond to propositions or parts of propositions. For example,

the proposition FLOOD[RIVER,TOWN] in Fig. 1 is composed of the dependencies

RIVER ‹ FLOOD and FLOOD fi TOWN. Thus, by analyzing the dependency struc-

ture of a sentence, information is gained about its propositional structure, which according

to many theorists, including Kintsch (1974, 1998), is what really matters in comprehension.
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4.2. Levels of representation

The Topic model (or for that matter, LSA) provides a coarse-grained semantic representa-

tion; it is designed to capture the essence—the gist—of a word’s meaning, but not all its

detail. To represent the TASA corpus, LSA uses 300 dimensions and anywhere between

500 and 1,700 topics are needed with the Topic model. In all our experiments, we use a

1,195 topic estimate which yielded performance comparable to the results reported in

Griffiths et al. (2007). However, this is not sufficient to specify the finer details of word

meanings. Typically a word loads only on a relatively small number of topics. For example,

river loads on only 18 topics; that number is sharply reduced when words are combined:

river in the context of flood involves four topics—too sparse a representation to be of much

use to represent meaning in all its detail. Steyvers and Griffiths (2008) make a similar argu-

ment in the context of memory and information retrieval. This is not a defect of the model,

but simply a consequence of its goal—to identify the cluster structure (topics) of the seman-

tic space. The gist level representation, whether LSA or Topics, is useful for what it was

designed for, but it needs to be complemented by a representation that specifies in detail

how words are used. An obvious candidate would be the word-by-word matrix that specifies

how often a word is used with another word of the corpus in the same sentence. If we were

to cluster such a matrix, we would come up with something similar to the topic structure

derived from the word-by-document matrix. But in its unreduced form, the word-by-word

matrix provides the kind of detail we need. For the TASA corpus, this means that we now

have a second way to represent a word meaning, by means of the 58k words in the corpus.

Both relational and sequential information can be captured in this way. The number of times

words co-occur in a document yields relational information, but a similar word-by-word

matrix based on the frequencies a word co-occurs with other words in a dependency unit

Fig. 1. The dependency tree for the sentence ‘‘The furious river flooded the town’’ and its propositional struc-

ture (indicated by the shaded boxes).
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can be used to specify how the word is used syntactically.5 We call this the explicit rela-

tional and sequential representation, to distinguish it from the gist-level topic representation.

For the word river, for instance, the explicit relational trace contains 2,730 items with a

non-zero probability and the explicit sequential trace contains 132 items.

It has long been recognized that language involves processing at a general semantic as

well as a verbatim level. In the CI-model of text comprehension, different levels of

representation are distinguished, including a verbatim surface structure and a propositional

textbase (e.g., Kintsch, 1998). Similarly, theories of memory have postulated dual processes,

at the level of gist and at the verbatim level (e.g., Brainerd, Wright, & Reyna, 2002).

Statistical models of language need to take into account both latent semantic structure and

verbatim form. Latent semantic structure is inferred from the co-occurrence of words in doc-

uments by means of some form of dimension reduction; this provides the gist-level informa-

tion. In addition, explicit information, both relational and sequential, about how a word is

used with other words, is needed to allow for a finer-grained analysis, including the ability

to deal with syntactic patterns.

4.3. The long-term memory store

The input to LTM is a linguistic corpus such as the TASA corpus, which consists of 44k

documents and 58k word types (excluding very rare and very frequent words which are both

uninformative for our purposes) for a total of 11m words. The corpus is analyzed in three

ways.

First, a word-by-document matrix is constructed, whose entries are the frequencies with

which each word appears in each of the documents. Dimension reduction is used to compute

the gist trace for a word—the 300-dimensional LSA vector, or the 1,195-dimensional topics

vector.

The second analysis is based on constructing from the corpus a word-by-word matrix, the

entries of which are frequencies with which each word has co-occurred with every other

word in a document (or sentence). Probabilities are estimated from the frequency counts

using the Pitman-Yor process (Teh, 2006), in effect normalizing and smoothing the data.

The explicit relational trace is thus a vector of length 58k of word-word co-occurrence

counts.

The third analysis is performed by first parsing the entire corpus with a dependency gram-

mar parser, the MALT parser of Nivre (Nivre et al., 2007). The explicit sequential trace is a

vector of length 58k, the entries of which are association probabilities corresponding to how

often a word has been used in a dependency unit with another word in the corpus, again

using the Pitman-Yor process. Actually, there are two such traces: one for words on the right

side of a dependency unit and one for the left side.

4.4. The construction of meaning in working memory

The context words in the explicit relational vector are the features that will be used for

the construction of meaning in working memory. A language model is constructed in work-

W. Kintsch, P. Mangalath ⁄ Topics in Cognitive Science 3 (2011) 359



ing memory by sampling these features, subject to local semantic and syntactic constraints.

We sketch this procedure for words out of context, words in the context of other words,

dependency units, and sentences.

For words out of context, the topic vector (alternatively, the LSA vector) provides a

ready representation at the gist level. For many purposes this representation is all that is

needed. When a more detailed meaning representation is required, the explicit relational

trace is used. However, by itself that vector is so noisy as to be useless: A word co-occurs

with many different words that are not semantically related with it. Therefore, a language

model needs to be constructed by sampling context words from the explicit relational trace

that are semantically relevant. This is achieved by allowing the topic representation of the

word W to guide the feature sampling process. A topic is sampled at random from the dis-

tribution of topics for W. Then a context word wi is sampled according to the probability

that the selected topic has for all the words in the explicit relational trace. The sampled

feature’s weight is determined by the probability of selecting that particular topic in the

first place (in our experiments all topics are equiprobable); by the probability of the

selected word wi for the topic; and by the probability of the selected word wi in the rela-

tional trace of W. Repeating this sampling procedure and averaging samples generates a

feature vector, where the features are the sampled context words. For example, consider

the meaning of kill, out of context (Fig. 2). The 1,195-dimensional topics vector for kill
has 24 non-zero entries and is the gist representation for kill. To generate the explicit rep-

resentation, a topic is selected and a context word wi is sampled according to its probabil-

ity on the selected topic and weighted appropriately. The explicit relational vector for kill
has 58k dimensions, 11,594 with a non-zero count.6 The language model generated by

sampling topically related features also has 58k dimension, but only 1,711 non-zero

entries. In other words, kill has occurred in a document with 11,594 other words in our

corpus, but only 1,711 of these are topically related to kill. These then form the explicit

meaning representation for kill out of context. Among the most strongly weighted features

are the words insects, chemicals, poison, hunter, and pest.
Now consider predication, that is, the construction of meaning in the context of another

word. Exactly the same sampling procedure is used to generate a language model except

that the topics controlling the sampling process are now selected from the context word. For

instance (Fig. 3), to generate the explicit representation of kill in the context of hunter, top-

ics are sampled from the topic distribution for hunter (hunter loads on eight topics). Features

are then selected from the explicit relational trace of kill constrained by the hunter-topics.

This generates a vector with 1,366 non-zero entries to represent killhunter (the meaning of kill
in the context of hunter), the top entries of which are, for example, the context words ani-
mals, deer, hunter, wild, and wolves. In other words, while the meaning of kill in the TASA

corpus was strongly biased in favor of chemicals and poisons, in the context of hunter, kill
has to do with wild animals and wolves.

For another example, consider the meaning of bright in the context of light and in

the context of smart. The language model for the former has 1,143 entries and the

language model for the latter has 1,016 entries. However, there is hardly any overlap
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between them. Brightlight is related to light, P(light Œbrightlight) = 0.44, but brightsmart is not,

P(light Œbrightsmart) = 0.004.

We have described the construction of meaning of a word in a proposition ⁄ dependency

unit. We now show how the same procedure is applied to sentences. The model has not yet

been extended to deal with complex sentences, but we present some preliminary efforts at

addressing this difficult task. A sentence contains several interacting somewhat independent

propositions. The general strategy we propose is to employ the dependency parse of the sen-

tence to break down the sentence into these independent propositions consisting either of a

single dependency unit or two dependency units. The word units now have a role in an

order-dependent specification of the proposition’s meaning. This propositional unit is first

initialized as a directed graph with vertices represented by the word, its contextualized

explicit relational trace, and the edges representing transition probabilities from its explicit

sequential trace. This essentially amounts to first contextualizing the words using the expli-

cit relational trace and then checking whether they are combined in a syntactically accept-

able dependency unit according to the explicit sequential trace. The meaning of the

proposition is now specified as a set of such similar chains the initialized representation can

derive.

Consider the sentence The hunter killed the deer. The process described above first

initializes a chain Hunter->Killed->Deer. We would like this overspecified initial

Fig. 2. The meaning of kill in isolation; numbers indicate number of non-zero entries in a vector.

Fig. 3. The meaning of kill in the context of hunter; numbers indicate number of non-zero entries in a vector.
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representation to capture the intended meaning as something like Agent{hunter, sportsman,

hunters} -> killed{shot, kill,kills, shoot} -> Patient{deer, bear, lion, wolves}. To enable

such generalization, we sample word features from hunterkilled, killedhunter,deer, and deerkilled.

The acceptance of the feature chain depends upon the product of the probabilities from the

explicit sequential trace. We analyze one such operational instance: Let the words (deer,
kill, sportsman) be sampled from hunterkilled and (shot->bear) be one feature subchain

from sampling killedhunter,deer and deerkilled From the candidate set of complete chains

(deer->shot->bear), (kill->shot->bear), and (sportsman->shot->bear), sportsman->shot is

the only unit with a non-zero probability and hence the only accepted chain. Each feature

has a weight associated with it that reflects its construction process: the paradigmatic proba-

bilities resulting from how substitutable a candidate word is semantically, as well as the syn-

tagmatic probabilities resulting from how substitutable it is with respect to the sequential

context. A similarity measure for comparing two sentences can be obtained by relative sums

of the weights for those features that overlap in two sentence representations. This is not as

intuitive a similarity measure as a cosine or a conditional probability, but it does indicate

when sentences are unrelated and orders related sentences by rank. Some examples are

shown in Table 3.

We have not yet systematically evaluated the CI-II model for sentences with a representa-

tive set of materials, in part because we are not aware of a generally accepted benchmark to

compare it with. There are, however, two such benchmarks that have been used in the litera-

ture to evaluate and compare statistical models of semantics: the free association norms of

Nelson and the TOEFL test. The University of South Florida Association Norms (Nelson,

McEvoy, & Schreiber, 1998) include human ratings for 42,922 cue-target pairs. There are

several ways to compare the human data with model predictions. One way is to find out how

often the associate ranked highest by a model was in fact the first associate produced by the

human subjects. For LSA and Topic, these values were 9% and 14%, respectively. Since

Table 3

Similarity values for some sentence pairs

Similarity

The hunter shot the deer
The deer was killed by the hunter 0.160

The hunter killed the bear 0.093

The hunter was shot by the deer 0

The deer killed the hunter 0

The soldiers captured the enemy
The army defeated the enemy 0.26

The prisoners captured the soldiers 0

The police apprehended the criminal
The police arrested the suspect 0.17

The cops arrested the thief 0.018

The criminal arrested the police 0
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LSA uses a symmetric distance measure and associations are well known to be asymmetric,

it is not surprising that the Topics model outperforms LSA (see also Figure 8 in Griffiths

et al., 2007). The CI-II model performs about as well as the Topic model (14%), but the

really interesting result is the substantial improvement obtained by combining the Topic and

CI-II predictions (22%). The combination results in a 135% improvement over LSA. The

implications of this result are important, for it provides direct support for the dual memory

assumption of the CI-II model. The CI-II predictions are based on the explicit relational

trace. However, that does not replace the gist trace (here the Topic model); rather, it comple-

ments it. To account for human behavior, both are necessary.

Table 4 shows another way to compare models with the data from the Nelson norms. It

shows the median rank of the first five associates predicted by the different models. The

Topic and the CI-II models yield substantially better predictions than LSA; however, the

strongest predictor of data is the CI-II—Topic combination, which produces an 82%

improvement in prediction for the first ranked response.

The conclusion that both gist level and explicit representations are needed to account for

the data is further supported by the analyses of the models’ performance on the TOEFL test,

shown in Table 5. The TOEFL is a synonym recognition task with four response alternatives

(Landauer & Dumais, 1997). Performance on the TOEFL is predicted best when both gist and

explicit information are used, providing further support for the dual-memory model. Note that

LSA does quite well with the TOEFL test predictions, better than the Topic model on its own

and not much different from the CI-II model. However, combining a gist-model (either LSA

or Topic) with the explicit CI-II yields the best results.

The predictions for both the free association data and the TOEFL test both involve

word meanings out of context. To evaluate the predication component of the CI-II

model, we use an example from Jones and Mewhort (2007). To show how their

BEAGLE model combines order and context information, Jones and Mewhort note that

following Thomas_______, the strongest completion is Jefferson, but that additional

context can override this association, so that Edison becomes the most likely word in

Thomas ________ made the first phonograph (their Table 8). In Table 6, we show that

the CI-II model behaves in much the same way, not only favoring Edison over Jefferson
in the proper context, but ruling out Jefferson and the other alternatives. Each context

sentence was parsed to show which words were directly connected to the target word. In

Table 4

Median ranks of the first five associates produced by human subjects in the ordering produced by

four models

LSA Topic CI-II CI-II & Topic

First associate 49 31 20 9

Second associate 116 107 62 22

Third associate 185 196 113 49

Fourth associate 268 327 180 72

Fifth associate 281 423 229 90
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the example above, the relevant context would be made phonograph. The sequential

trace of Thomas_______ contains 143 context words, including the six target words

shown in Table 6. A topic is sampled from the gist representation of made phonograph
(which loads on two topics) and features are sampled from the sequential trace under the

control of the made phonograph topic sampled. Only Edison loads on the topics of made
phonograph, so it is selected with probability 1.

How does the performance of the CI-2 model compare with other models? There are two

considerations for such a comparison: whether the top choice of a model is correct, and how

strongly a model prefers the correct choice over the next-best alternative. The CI-2 model

not only picks the correct alternative in all six contexts, but it also distinguishes quite

sharply between the correct choice and the second best, the average difference being 0.69.

For comparison, BEAGLE also picks all the correct choices, but the average difference

between the correct choice and the second best is only 0.21. Not surprisingly, LSA and

Topic, with their neglect of order information, do not do nearly as well. LSA makes three

errors and Topic model four.

Table 5

Predictions for 79 items on the TOEFL test for five models

LSA Topic CI-2 CI-2 & Topic LSA & Topic

No. attempted 60 45 60 60 60

No. correct 32 24 34 39 42

Note. Number attempted is the number of items for which all five words were in the vocabulary used by the

model.

Table 6

Completion probabilities in seven different contexts

Jefferson Edison Aquinas Paine Pickney Malthus

Thomas <——> .21 .02 .03 .13 .06 .01

Thomas <——> wrote the

Declaration of Independence.

.68 0 0 .31 0 0

Thomas <——> made the

first phonograph.

0 1.00 0 0 0 0

Thomas <——> taught that

all civil authority comes from God.

0 0 .66 0 0 0

Thomas <——> is the author

of Common Sense.

0 0 0 .12 0 0

A treaty was drawn up by the

American diplomat Thomas <—>.

0 0 0 0 .97 0

Thomas <——> wrote that

the human population increases

faster than the food supply.

0 0 0 0 0 1
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The same procedure was used to obtain predictions for a set of cloze data by Hamberger,

Friedman, and Rosen (1996). Hamberger obtained human completion data for 198 sentence

contexts, 12 of which had to be excluded from our analysis because they included words not

in our corpus. Predictions were obtained by turning the task into a 186-alternative multiple-

choice task. That is, each model, produced a rank ordering of the target items. To obtain the

rank orderings for all models, only the direct dependency unit was used as context. For

instance, for the item I sewed on the button with a needle and _______ , sewed dictates

which topics are allowed, and the probability of accepting a feature from the explicit trace

reflects how many times it has been seen with needle. The feature weights determine a rank

ordering of the target words. Table 7 shows the number of times a model correctly predicts

the first associate given by the human subjects (thread, in our example) as well as the med-

ian rank of the first associate for each model. The CI-II model using both relational and

sequential traces performs much better than LSA or the Topic model, but as in our earlier

analyses, the best performance is achieved when gist and explicit information is combined.

5. Conclusions

Statistical models of semantics are based on the analysis of linguistic corpora. The goal

of the analysis is to find the optimal (or near-optimal) algorithm that could generate these

corpora, given the constraints imposed by the human cognitive system. We have argued that

semantic models like LSA describe what is stored in long-term memory. Long-term seman-

tic word memory is a decontextualized trace that summarizes all the experiences a person

has had with that word. This trace is used to construct meaning in working memory. Mean-

ing is therefore always contextual, generated from the interaction between long-term mem-

ory traces and the momentary context existing in working memory. Importantly, these

interactions involve not only semantic traces but also syntactic constraints.

We have described a number of different ways to generate the representations in semantic

memory, relying on different machine learning techniques, such as singular value decompo-

sition for LSA and a Bayesian procedure for the Topic model. As long as these methods use

only the information provided by the co-occurrence of words in documents, they all yield

qualitatively similar results, with no obvious general superiority of one model over another.

No general, systematic comparison between these models has been made, but in our opinion

such a giant bake-off would have little value. Different models have different strengths and

limitations. Some are more natural to use for certain purposes than others, and one might as

well take as much advantage of this situation as one can. In other words, it seems reasonable

Table 7

Performance of six models on 186 cloze test items from Hamberger et al. (1996)

LSA Topic

CI-II

relational

CI-II

sequential

CI-II

rel. & seq.

CI-II &

Topic

Number first associate 43 46 55 68 80 89

Median rank first associate 7 6 5 3 2 2
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to use LSA for essay grading, the Topic model for asymmetric similarity judgments, and so

on. Indeed, the fact that all these formally different approaches yield similar results is reas-

suring: We seem to be getting at real semantic facts, not some method-specific artifacts.

When additional information beyond word co-occurrence is considered, such as word

order information, major differences between models emerge. The success of the holograph

model BEAGLE in accounting for a wide range of psycholinguistic data provides an illus-

tration of the importance of word order information. However, syntactic structure plays an

even more important role in language use. The syntagmatic-paradigmatic model of Dennis

(2005) and our own approach, the CI-II model, are two examples of how syntactic informa-

tion can be incorporated into statistical models of semantics.

Meaning in the CI-II model is constructed in working memory from information stored in

long-term memory. Different types of information are available for the contextual construc-

tion of meaning, from gist-like information as in the Topic model to explicit memory traces.

Relational traces record word co-occurrences in documents; sequential traces record word

pairs that occurred together in dependency units in sentences, obtained from parsing the sen-

tences of a corpus with a dependency parser. When this information is used in working

memory to construct a sentence meaning, a language model for the sentence is generated in

such a way that it contains only contextually relevant and syntactically appropriate informa-

tion. Thus, as in the original CI model, the construction phase uses all information about

word meanings and syntax that is available in long-term memory, whereas the integration

phase selects on those aspects that are contextually relevant.

Future work on the CI-II model will focus on extending it to complex sentences and on

developing applications to scoring of short-answer questions in the context of a comprehen-

sion tutor. But apart from developing and evaluating the present framework, there are com-

prehension problems that are beyond the scope of the model discussed here. The most

obvious one concerns ways to derive syntactic information through unsupervised learning

mechanisms. There are already unsupervised learning models for syntax. The ADIOS model

of Solan, Horn, Ruppin, and Edelman (2005) (see also Edelman, 2008; Chapter 7) uses sta-

tistical information to learn regularities, relying on a graph theoretic approach. The syntag-

matic-paradigmatic model of Dennis (2005) infers both semantic and syntactic structure in

an unsupervised fashion. One can confidently expect rapid progress in this area. The second

gap in the development of statistical models of semantics that needs to be addressed is the

limitation of current models to the symbolic level, that is, their neglect of the embodiment

of meaning. Computers do not have bodies, but there is reason to believe that it might be

possible to model embodiment so as to integrate perceptual and action-based representations

with the symbolic representations studied here. Promising beginnings in that respect have

already been made by various researchers, such as Goldstone, Feng, and Rogosky (2005)

and Andrews, Vigliocco, and Vinson (2009).

There is a third problem, however, that appears more difficult to solve with current meth-

ods: Discourse comprehension requires not only knowledge of what words mean and how

they can be combined, as has been discussed here, but world knowledge beyond the lexical

level—knowledge about causal relations, about the physical and social world, which is not

captured by our present techniques. Discourse comprehension involves representations at
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three levels: the surface or verbatim level, the propositional textbase, and the situation

model (Kintsch, 1998). We are dealing here with the first two; future models will have to be

concerned with the situation model as well. Elman (2009) has made a forceful argument

that, in order to be successful, theories of language comprehension need to explicitly model

event schemas and deal with all the issues that were once considered by schema theory.

Some of these problems are addressed by the present model. For instance, the model yields

a high similarity value of 0.4095 for the comparison between The carpenter cuts wood and

The carpenter saws wood, and a low similarity value of 0.0005 for The carpenter cuts wood
and The carpenter cuts the cake. However, many more complex issues remain that are

beyond the scope of the present model.

Notes

1. We use the term ‘‘generative’’ in a broad sense to refer to a dynamically reconfigura-

ble lexicon where the meaning of a word is generated in working memory based on

the context using various heuristics. The term ‘‘generative lexicon’’ bears no refer-

ence or relation to the standard definition in Bayesian machinery.

2. When people construct meaning, they consider more than just textual information,

but, as we shall see, the semantic representations obtained solely from written texts

can be remarkably good approximations to human word meanings. This issue is dis-

cussed in more detail in Kintsch (2008a).

3. To generate the well-established and distinct meanings of banks, a simpler algorithm

would have sufficed. For instance, the centroids of banks-money and banks-river are

close to the banksmoney and banksriver vectors. However, the enhanced context sensi-

tivity of the predication algorithm is crucial for dealing with the more usual fluid

word senses and metaphors. The centroid of lawyer-shark makes no sense—its clos-

est neighbors are sharks, Porgy, whale, bass, swordfish, and lobsters—nowhere near

the intended meaning of the metaphor.

4. The ‘‘good-enough’’ approach is an example of Simon’s concept of satisficing

(Simon, 1969); other areas in which this approach has been adopted are perception

(e.g., Edelman, 2008) and decision making (e.g., Gigerenzer & Goldstein, 1996).

5. Dependency units are used rather than n-grams because they pick up long-distance

relations among the words in a sentence and avoid accidental ones.

6. Zero here means almost-zero; because of the smoothing we have used, none of the

probabilities are strictly zero.
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